We consider differentially private range queries on a graph where query ranges are defined as the set of edges on a shortest path of the graph. Edges in the graph carry sensitive attributes and the goal is to report the sum of these attributes on a shortest path for counting query or the minimum of the attributes in a bottleneck query. We use differential privacy to ensure that the release of these query answers provide protection of the privacy of the sensitive edge attributes. Our goal is to develop mechanisms that minimize the additive error of the reported answers with the given privacy budget. In this paper we report non-trivial results for private range queries on shortest paths. For counting range queries we can achieve an additive error of $\tilde O(n^{1/3})$ for $\varepsilon$-DP and $\tilde O(n^{1/4})$ for $(\varepsilon, \delta)$-DP. We present two algorithms where we control the final error by carefully balancing perturbation added to the edge attributes directly versus perturbation added to a subset of range query answers (which can be used for other range queries). Bottleneck range queries are easier and can be answered with polylogarithmic additive errors using standard techniques.


翻译:我们考虑在图表上对不同私人范围的查询,在图表中,查询范围被定义为图形最短路径上的边缘。图形中的边缘带有敏感属性,目标是在最短路径上报告这些属性的总和,用于计算查询或瓶颈查询中最小属性的最小值。我们使用不同的隐私来确保这些查询的解答能够保护敏感边缘属性的隐私。我们的目标是开发机制,以特定隐私预算来最大限度地减少所报告答复的添加错误。在本文中,我们报告在最短路径上私人查询的非三端结果。在计算范围查询时,我们可以在最短路径上得出美元(n<unk> 1/3})的累加误($\tilde O(n<unk> 1/3})和美元(tilepsilon$-DP)和美元($\tilde O(n<unk> 1/4}),用于美元(varepsilon,\delta)-DP。我们提出了两种算法,我们通过仔细平衡边缘属性增加的边际属性和增加的每端域查询,来控制最后错误。在范围查询的子中增加一个子查询解答(可以使用较易的调的调调调调其他调)。</s>

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月21日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员