This paper studies the online stochastic resource allocation problem (RAP) with chance constraints. The online RAP is a 0-1 integer linear programming problem where the resource consumption coefficients are revealed column by column along with the corresponding revenue coefficients. When a column is revealed, the corresponding decision variables are determined instantaneously without future information. Moreover, in online applications, the resource consumption coefficients are often obtained by prediction. To model their uncertainties, we take the chance constraints into the consideration. To the best of our knowledge, this is the first time chance constraints are introduced in the online RAP problem. Assuming that the uncertain variables have known Gaussian distributions, the stochastic RAP can be transformed into a deterministic but nonlinear problem with integer second-order cone constraints. Next, we linearize this nonlinear problem and analyze the performance of vanilla online primal-dual algorithm for solving the linearized stochastic RAP. Under mild technical assumptions, the optimality gap and constraint violation are both on the order of $\sqrt{n}$. Then, to further improve the performance of the algorithm, several modified online primal-dual algorithms with heuristic corrections are proposed. Finally, extensive numerical experiments on both synthetic and real data demonstrate the applicability and effectiveness of our methods.
翻译:本文研究在线随机资源配置问题( RAP ) 。 在线 RAP 是一个0-1整数线性编程问题, 资源消费系数随相应收入系数逐栏披露。 当一列披露时, 相应的决定变量会立即在没有未来信息的情况下确定 。 此外, 在在线应用中, 资源消费系数往往通过预测获得 。 为了模拟其不确定性, 我们考虑机会限制 。 根据我们的最佳知识, 这是在网上 RAP 问题中首次引入机会限制 。 假设不确定变量已经知道 Gaussian 分布, 随机性 RAP 可以转换成一个确定性但非线性的问题, 带有整数二阶锥体限制 。 接下来, 我们将这一非线性问题线性化, 分析 Vanilla 在线基本算法的性能 。 在轻度技术假设下, 最佳性差距和约束性违背性限制性在 $\ sqrrt $ 。 然后, 为了进一步改进算法的性, 几个经过修改的在线初步和 数据分析法 。</s>