We propose a non-linear, Bayesian non-parametric latent variable model where the latent space is assumed to be sparse and infinite dimensional a priori using an Indian buffet process prior. A posteriori, the number of instantiated dimensions in the latent space is guaranteed to be finite. The purpose of placing the Indian buffet process on the latent variables is to: 1.) Automatically and probabilistically select the number of latent dimensions. 2.) Impose sparsity in the latent space, where the Indian buffet process will select which elements are exactly zero. Our proposed model allows for sparse, non-linear latent variable modeling where the number of latent dimensions is selected automatically. Inference is made tractable using the random Fourier approximation and we can easily implement posterior inference through Markov chain Monte Carlo sampling. This approach is amenable to many observation models beyond the Gaussian setting. We demonstrate the utility of our method on a variety of synthetic, biological and text datasets and show that we can obtain superior test set performance compared to previous latent variable models.
翻译:我们提出了一个非线性、巴伊西亚非参数性潜伏变量模型,其中潜伏空间假定在先前使用印度自助餐程序时是稀疏和无限的,先验的。 后验, 潜伏空间的瞬间维度数量有一定的保证。 将印度自助餐程序置于潜伏变量上的目的是: 1. 自动和概率地选择潜伏维度的数量。 2. 将潜伏空间的聚变点吸引到潜伏空间, 印度自助自助餐程序将选择哪些元素完全为零。 我们提议的模型允许在自动选择潜伏维度数量时进行稀疏、非线性潜伏变量模型。 推论可以使用随机的Fourier近似法进行牵引, 我们可以很容易地通过Markov链 Monte Carlo 取样进行远地推断。 这种方法适用于高山环境以外的许多观测模型。 我们展示了我们的方法在各种合成、生物和文本数据集中的实用性, 并显示我们可以得到比先前潜伏的可变模型更高级的测试性。