Covariance function estimation is a fundamental task in multivariate functional data analysis and arises in many applications. In this paper, we consider estimating sparse covariance functions for high-dimensional functional data, where the number of random functions p is comparable to, or even larger than the sample size n. Aided by the Hilbert--Schmidt norm of functions, we introduce a new class of functional thresholding operators that combine functional versions of thresholding and shrinkage, and propose the adaptive functional thresholding estimator by incorporating the variance effects of individual entries of the sample covariance function into functional thresholding. To handle the practical scenario where curves are partially observed with errors, we also develop a nonparametric smoothing approach to obtain the smoothed adaptive functional thresholding estimator and its binned implementation to accelerate the computation. We investigate the theoretical properties of our proposals when p grows exponentially with n under both fully and partially observed functional scenarios. Finally, we demonstrate that the proposed adaptive functional thresholding estimators significantly outperform the competitors through extensive simulations and the functional connectivity analysis of two neuroimaging datasets.
翻译:共变函数估算是多变量功能数据分析中的一项基本任务,并在许多应用中产生。 在本文中,我们考虑估计高维功能数据中稀少的共变函数,其中随机函数数与随机函数数可比,甚至大于样本大小 n。 在Hilbert-Schmidt函数规范的帮助下,我们引入了一个新的功能阈值操作员类别,将阈值和缩水的功能版本结合起来,并通过将样本共变函数个别条目的差异效应纳入功能阈值,提出适应性功能阈值估计值。为了处理部分观察到曲线的实用情景,我们还制定了非对称平滑法,以获得平滑的适应性功能阈值估计值,并加速计算。我们研究了在完全和部分观察到功能假设下快速增长时我们提案的理论属性。最后,我们证明拟议的适应性功能阈值估计值通过广泛的模拟和两个神经成像数据集的功能连接分析,大大超越了竞争者。