There are good arguments to support the claim that deep neural networks (DNNs) capture better feature representations than the previous hand-crafted feature engineering, which leads to a significant performance improvement. In this paper, we move a tiny step towards understanding the dynamics of feature representations over layers. Specifically, we model the process of class separation of intermediate representations in pre-trained DNNs as the evolution of communities in dynamic graphs. Then, we introduce modularity, a generic metric in graph theory, to quantify the evolution of communities. In the preliminary experiment, we find that modularity roughly tends to increase as the layer goes deeper and the degradation and plateau arise when the model complexity is great relative to the dataset. Through an asymptotic analysis, we prove that modularity can be broadly used for different applications. For example, modularity provides new insights to quantify the difference between feature representations. More crucially, we demonstrate that the degradation and plateau in modularity curves represent redundant layers in DNNs and can be pruned with minimal impact on performance, which provides theoretical guidance for layer pruning. Our code is available at https://github.com/yaolu-zjut/Dynamic-Graphs-Construction.
翻译:有很好的理由支持这样的主张,即深神经网络(DNNs)比以往手工制作的特征工程(DNNs)具有更好的特征表现,这导致显著的性能改进。在本文件中,我们朝着理解不同层特征表现的动态迈出了很小的一步。具体地说,我们用动态图形将预先训练的 DNNs 中中间代表的分级过程作为社区在动态图形中的演进模型。然后,我们引入模块性,即图形理论中的通用指标,以量化社区演变。在初步实验中,我们发现模块性随着层的更深,当模型复杂性与数据集相比非常复杂时,降解和高地会增加。我们通过无症状分析,证明模块性能可以广泛用于不同的应用。例如,模块性提供了新的见解,以量化特征表现之间的差异。更关键的是,我们证明模块性曲线的退化和高位代表DNNS的冗余层,并且可以对性能产生最小影响,为层的操作提供理论性指导。我们的代码可以在 https://githbub.com-chymaly-graus/Grautus-jujuz。