There are good arguments to support the claim that deep neural networks (DNNs) capture better feature representations than the previous hand-crafted feature engineering, which leads to a significant performance improvement. In this paper, we move a tiny step towards understanding the dynamics of feature representations over layers. Specifically, we model the process of class separation of intermediate representations in pre-trained DNNs as the evolution of communities in dynamic graphs. Then, we introduce modularity, a generic metric in graph theory, to quantify the evolution of communities. In the preliminary experiment, we find that modularity roughly tends to increase as the layer goes deeper and the degradation and plateau arise when the model complexity is great relative to the dataset. Through an asymptotic analysis, we prove that modularity can be broadly used for different applications. For example, modularity provides new insights to quantify the difference between feature representations. More crucially, we demonstrate that the degradation and plateau in modularity curves represent redundant layers in DNNs and can be pruned with minimal impact on performance, which provides theoretical guidance for layer pruning. Our code is available at https://github.com/yaolu-zjut/Dynamic-Graphs-Construction.


翻译:有很好的理由支持这样的主张,即深神经网络(DNNs)比以往手工制作的特征工程(DNNs)具有更好的特征表现,这导致显著的性能改进。在本文件中,我们朝着理解不同层特征表现的动态迈出了很小的一步。具体地说,我们用动态图形将预先训练的 DNNs 中中间代表的分级过程作为社区在动态图形中的演进模型。然后,我们引入模块性,即图形理论中的通用指标,以量化社区演变。在初步实验中,我们发现模块性随着层的更深,当模型复杂性与数据集相比非常复杂时,降解和高地会增加。我们通过无症状分析,证明模块性能可以广泛用于不同的应用。例如,模块性提供了新的见解,以量化特征表现之间的差异。更关键的是,我们证明模块性曲线的退化和高位代表DNNS的冗余层,并且可以对性能产生最小影响,为层的操作提供理论性指导。我们的代码可以在 https://githbub.com-chymaly-graus/Grautus-jujuz。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员