We propose an action-conditional human motion generation method using variational implicit neural representations (INR). The variational formalism enables action-conditional distributions of INRs, from which one can easily sample representations to generate novel human motion sequences. Our method offers variable-length sequence generation by construction because a part of INR is optimized for a whole sequence of arbitrary length with temporal embeddings. In contrast, previous works reported difficulties with modeling variable-length sequences. We confirm that our method with a Transformer decoder outperforms all relevant methods on HumanAct12, NTU-RGBD, and UESTC datasets in terms of realism and diversity of generated motions. Surprisingly, even our method with an MLP decoder consistently outperforms the state-of-the-art Transformer-based auto-encoder. In particular, we show that variable-length motions generated by our method are better than fixed-length motions generated by the state-of-the-art method in terms of realism and diversity. Code at https://github.com/PACerv/ImplicitMotion.
翻译:我们建议使用变式隐含神经表征(INR),以行动为条件的人类运动生成方法。变式形式主义使IRR能够以行动为条件进行分布,从中可以很容易地抽样展示,以产生新的人类运动序列。我们的方法通过构造提供变长序列生成,因为IRR的一部分被优化用于任意的全序列,带有时间嵌入器。相比之下,以前的工作报告在制作变长序列模型方面存在困难。我们确认,我们采用变换器解码器的方法,在真实主义和多样性方面,超越了人类12、NTU-RGBBD和UESTC的所有相关方法。令人惊讶的是,甚至我们使用MLP解码的方法也始终超越了基于时间嵌入器的自动电解码。特别是,我们显示,我们的方法产生的变长运动优于由现实主义和多样性方面的国家-艺术方法产生的固定长度动作。 https://github.com/PACev/GImplition。