Mobile manipulation in robotics is challenging due to the need of solving many diverse tasks, such as opening a door or picking-and-placing an object. Typically, a basic first-principles system description of the robot is available, thus motivating the use of model-based controllers. However, the robot dynamics and its interaction with an object are affected by uncertainty, limiting the controller's performance. To tackle this problem, we propose a Bayesian multi-task learning model that uses trigonometric basis functions to identify the error in the dynamics. In this way, data from different but related tasks can be leveraged to provide a descriptive error model that can be efficiently updated online for new, unseen tasks. We combine this learning scheme with a model predictive controller, and extensively test the effectiveness of the proposed approach, including comparisons with available baseline controllers. We present simulation tests with a ball-balancing robot, and door-opening hardware experiments with a quadrupedal manipulator.
翻译:机器人的移动操作之所以具有挑战性,是因为需要解决许多不同的任务,例如打开门或选择和定位物体。 通常, 机器人有一个基本的第一条原则系统描述, 从而激励使用基于模型的控制器。 但是, 机器人的动态及其与物体的相互作用受到不确定性的影响, 限制了控制器的性能。 为了解决这个问题, 我们提议一个巴耶斯多任务学习模型, 使用三角基函数来识别动态中的错误。 这样, 不同但相关任务的数据就可以被利用来提供一个描述性错误模型, 可以在网上有效更新, 用于新的、 看不见的任务。 我们把这一学习计划与模型的预测控制器结合起来, 并广泛测试拟议方法的有效性, 包括与可用基准控制器进行比较。 我们用一个球平衡机器人进行模拟测试, 并且用一个四重操纵器进行门打开硬件实验 。