We extend the methodology in [Yang et al., 2021] to learn autonomous continuous-time dynamical systems from invariant measures. We assume that our data accurately describes the dynamics' asymptotic statistics but that the available time history of observations is insufficient for approximating the Lagrangian velocity. Therefore, invariant measures are treated as the inference data and velocity learning is reformulated as a data-fitting, PDE-constrained optimization problem in which the stationary distributional solution to the Fokker--Planck equation is used as a differentiable surrogate forward model. We consider velocity parameterizations based upon global polynomials, piecewise polynomials, and fully connected neural networks, as well as various objective functions to compare synthetic and reference invariant measures. We utilize the adjoint-state method together with the backpropagation technique to efficiently perform gradient-based parameter identification. Numerical results for the Van der Pol oscillator and Lorenz-63 system, together with real-world applications to Hall-effect thruster dynamics and temperature prediction, are presented to demonstrate the effectiveness of the proposed approach.
翻译:我们扩展了[Yang等人,2021]中的方法,以便从变化中学习自主的连续时动态系统,我们假设我们的数据准确地描述了动态无症状统计,但现有观测时间历史不足以接近拉格朗加速度,因此,差异性措施被视为推论数据,速度学习被重拟为数据匹配、受PDE限制的优化问题,其中Fokker-Planck等方程式的固定分布式分配解决方案被用作一种不同的替代前方模型。我们考虑了基于全球多数值、片状多数值多数值和完全连接的神经网络的速度参数化,以及各种客观功能,以比较合成和变量计量中的参考。我们使用连接状态方法和反调整技术,以高效地进行基于梯度的参数识别。Van der Pol 振动器和Lorenz-63系统的净值结果,连同对霍尔效应推进器动力和温度预测方法的拟议实际应用,展示了拟议的有效性。