This paper describes a novel method of training a semantic segmentation model for scene recognition of agricultural mobile robots exploiting publicly available datasets of outdoor scenes that are different from the target greenhouse environments. Semantic segmentation models require abundant labels given by tedious manual annotation. A method to work around it is unsupervised domain adaptation (UDA) that transfers knowledge from labeled source datasets to unlabeled target datasets. However, the effectiveness of existing methods is not well studied in adaptation between heterogeneous environments, such as urban scenes and greenhouses. In this paper, we propose a method to train a semantic segmentation model for greenhouse images without manually labeled datasets of greenhouse images. The core of our idea is to use multiple rich image datasets of different environments with segmentation labels to generate pseudo-labels for the target images to effectively transfer the knowledge from multiple sources and realize a precise training of semantic segmentation. Along with the pseudo-label generation, we introduce state-of-the-art methods to deal with noise in the pseudo-labels to further improve the performance. We demonstrate in experiments with multiple greenhouse datasets that our proposed method improves the performance compared to the single-source baselines and an existing approach.


翻译:本文描述了一种新颖的方法,用于培训一种用于利用与目标温室环境不同的户外场景公开数据集的农业移动机器人现场识别的语义分解模型。 语义分解模型要求用枯燥的人工人工说明说明提供大量标签。 围绕它开展工作的一种方法是未经监督的域适应(UDA),将知识从标签源数据集转移到未贴标签的目标数据集。 然而,在城市景象和温室等不同环境之间的适应中,现有方法的有效性没有得到很好的研究。 在本文中,我们建议了一种方法,用于培训温室气体图像的语义分解模型,而无需人工贴标签的温室气体图像数据集。 我们的想法核心是使用多种丰富的不同环境的富集图像数据集,带有分解标签标签,为目标图像制作假标签,以便从多种来源有效转让知识,并实现对语义分解进行精确的培训。与伪标签生成一起,我们引入了最先进的方法来处理伪标签中的噪音,以便进一步改进温室气体图像的手动性能。 我们用多种基线模型实验中展示了一种我们所拟的模型。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员