Humans can effortlessly perform very complex, dexterous manipulation tasks by reacting to sensor observations. In contrast, robots can not perform reactive manipulation and they mostly operate in open-loop while interacting with their environment. Consequently, the current manipulation algorithms either are inefficient in performance or can only work in highly structured environments. In this paper, we present closed-loop control of a complex manipulation task where a robot uses a tool to interact with objects. Manipulation using a tool leads to complex kinematics and contact constraints that need to be satisfied for generating feasible manipulation trajectories. We first present an open-loop controller design using Non-Linear Programming (NLP) that satisfies these constraints. In order to design a closed-loop controller, we present a pose estimator of objects and tools using tactile sensors. Using our tactile estimator, we design a closed-loop controller based on Model Predictive Control (MPC). The proposed algorithm is verified using a 6 DoF manipulator on tasks using a variety of objects and tools. We verify that our closed-loop controller can successfully perform tool manipulation under several unexpected contacts. Video summarizing this work and hardware experiments are found https://youtu.be/VsClK04qDhk.
翻译:人类可以不费力地通过对传感器观测作出反应来完成非常复杂、 模棱两可的操纵任务。 相反, 机器人不能进行反应性操作, 并且大多在与环境互动时在开放环操作中操作。 因此, 目前的操纵算法在性能上效率低下, 或者只能在结构严密的环境中运作。 在本文中, 我们展示了对复杂的操纵任务的封闭环控制, 机器人使用一个工具与对象互动。 使用工具的操作导致产生可行的操纵轨迹需要满足的复杂的运动和接触限制。 我们首先使用非利奥程序( NLP) 来展示开放环控制器的设计, 满足这些限制。 为了设计一个闭环控制器, 我们用触动传感器来显示一个物体和工具的配置。 我们用模型预测控制( MPC) 设计一个闭环控制器。 使用各种对象和工具来验证拟议的算法。 我们核查了我们的闭环操作器/ CD 是如何在各种对象和工具下成功操作的 。 我们核查了闭环- 控制器 。