项目名称: 无界区域最优控制问题的无限元方法研究
项目编号: No.11301194
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 廖才秀
作者单位: 华南师范大学
项目金额: 22万元
中文摘要: 无界区域的最优控制问题在很多领域中广泛存在,如空气污染控制问题、油藏数值模拟问题等,因此研究无界区域最优控制问题的数值计算方法具有重要的理论价值和应用前景。我们发现无限元方法可以解决很多无界区域里的问题。本项目将利用无限元方法研究无界区域里的最优控制问题。研究内容包含无界区域里线性椭圆最优控制问题、线性抛物最优控制问题、非线性椭圆最优控制问题、非线性抛物最优控制问题,讨论它们无限元解的存在性,先验误差估计和收敛性。我们采用最低阶Raviart-Thomas 混合有限元逼近状态变量、分片常数逼近控制变量,结合方程解的正则性、对偶论证、加权Clement 型插值算子、插值后处理技巧,应用Helmoholtz分解和Bubble 函数思想等,将获得混合无限元解的先验误差估计和收敛性。最后我们用数值算例验证这些理论结果。
中文关键词: 无界区域;最优控制问题;无限元方法;;
英文摘要: Optimal control problems in unbounded domain widely exist in many practical applications, such as air pollution control problems, reservoir numerical simulation and so on. Therefore ,the study of the numerical methods for the optimal control problems in unbounded domain has significant theoretical value and application prospect. We found the infinite element method can solve many problems in unbounded domain. This project will study the optimal control problems in unbounded domain by infinite element method.This project will do research on linear elliptic and parabolic optimal control problems in unbounded domain, nonlinear elliptic and parabolic optimal control problems in unbounded domain by infinite element method. We will discuss the existence of the infinite element solution, the priori error estimates and convergence.The state and the co-state will be approximated by the lowest order Raviart-Thomas infinite element and the control will be approximated by piecewise constant functions. Combining the regularity of the equations, duality argument, weighted Clement-type interpolation operator,interpolation postprocessing technique, as well as the application of Helmholtz decomposition and Bubble function, we will obtain the priori error estimates and convergence. Finally we will provide some numerical example
英文关键词: Unbounded domain;Optimal control problems;Infinite element method;;