Diagram parsing is an important foundation for geometry problem solving, attracting increasing attention in the field of intelligent education and document image understanding. Due to the complex layout and between-primitive relationship, plane geometry diagram parsing (PGDP) is still a challenging task deserving further research and exploration. An appropriate dataset is critical for the research of PGDP. Although some datasets with rough annotations have been proposed to solve geometric problems, they are either small in scale or not publicly available. The rough annotations also make them not very useful. Thus, we propose a new large-scale geometry diagram dataset named PGDP5K and a novel annotation method. Our dataset consists of 5000 diagram samples composed of 16 shapes, covering 5 positional relations, 22 symbol types and 6 text types. Different from previous datasets, our PGDP5K dataset is labeled with more fine-grained annotations at primitive level, including primitive classes, locations and relationships. What is more, combined with above annotations and geometric prior knowledge, it can generate intelligible geometric propositions automatically and uniquely. We performed experiments on PGDP5K and IMP-Geometry3K datasets reveal that the state-of-the-art (SOTA) method achieves only 66.07% F1 value. This shows that PGDP5K presents a challenge for future research. Our dataset is available at http://www.nlpr.ia.ac.cn/databases/CASIA-PGDP5K/.
翻译:图表剖析是解决几何问题的重要基础,在智能教育和文件图像理解领域吸引了越来越多的注意力。由于布局复杂和原始关系,平面几何图分析(PGDP)仍是一项艰巨的任务,值得进一步研究和探索。适当的数据集对于PGDP的研究至关重要。虽然提出了一些带有粗略说明的数据集,以解决几何问题,但它们规模较小,或者没有公开提供。粗略说明也使其不十分有用。因此,我们提出了一个新的大型几何图表数据集,名为PGDP5K,这是一个新颖的注解方法。我们的数据集由5000个图表样本组成,由16个形状组成,涵盖5个定位关系、22个符号类型和6个文本类型。不同于以前的数据集,我们的PGDP5K数据集被贴上了更精细的描述,包括原始等级、地点和关系。更精确说明和先前知识的结合,它可以自动和独特地产生不精确的几何参数。我们在PGDP5PPR5K/SOA上进行了5000图样的实验。我们只用PGDP/SOMKSO方法展示了我们未来的数据。