Continuous monitoring of foot ulcer healing is needed to ensure the efficacy of a given treatment and to avoid any possibility of deterioration. Foot ulcer segmentation is an essential step in wound diagnosis. We developed a model that is similar in spirit to the well-established encoder-decoder and residual convolution neural networks. Our model includes a residual connection along with a channel and spatial attention integrated within each convolution block. A simple patch-based approach for model training, test time augmentations, and majority voting on the obtained predictions resulted in superior performance. Our model did not leverage any readily available backbone architecture, pre-training on a similar external dataset, or any of the transfer learning techniques. The total number of network parameters being around 5 million made it a significantly lightweight model as compared with the available state-of-the-art models used for the foot ulcer segmentation task. Our experiments presented results at the patch-level and image-level. Applied on publicly available Foot Ulcer Segmentation (FUSeg) Challenge dataset from MICCAI 2021, our model achieved state-of-the-art image-level performance of 88.22% in terms of Dice similarity score and ranked second in the official challenge leaderboard. We also showed an extremely simple solution that could be compared against the more advanced architectures.
翻译:需要持续监测脚溃疡愈合,以确保特定治疗的功效,避免出现任何恶化的可能性。脚溃素断裂是创伤诊断中的一个重要步骤。我们开发了一种在精神上与早已建立的编码器脱解器和残余卷旋神经网络类似的模型。我们的模型包括留置连接以及每个卷发区中结合的频道和空间关注。对模型培训、测试时间增强和对获得的预测进行多数投票的简单补丁法导致优异性能。我们的模型没有利用任何现成的骨干结构、类似外部数据集的预培训或任何转移学习技术。网络参数的总数大约500万个左右,使得它与用于脚溃疡分解任务的现有最新模型相比,是一个显著轻度的模型。我们的实验展示了在补接层和图像层面的结果。在公开提供的脚Ulcer分化(FUSeg) 上应用了2021年美国国际足检学会(FUSeg)的挑战数据集,我们的模型没有利用任何现成的骨骨架结构,也没有利用类似的外部数据集或任何转移学习技术。与任何转移技术。与88-22%的图像级模型的模型的总成绩也显示了类似的高级标准。我们比较的排名。在高的排名中,我们也显示了类似于的排名。