The automatic creation of geometric models from point clouds has numerous applications in CAD (e.g., reverse engineering, manufacturing, assembling) and, more in general, in shape modelling and processing. Given a segmented point cloud representing a man-made object, we propose a method for recognizing simple geometric primitives and their interrelationships. Our approach is based on the Hough transform (HT) for its ability to deal with noise, missing parts and outliers. In our method we introduce a novel technique for processing segmented point clouds that, through a voting procedure, is able to provide an initial estimate of the geometric parameters characterizing each primitive type. By using these estimates, we localize the search of the optimal solution in a dimensionally-reduced parameter space thus making it efficient to extend the HT to more primitives than those that are generally found in the literature, i.e. planes and spheres. Then, we extract a number of geometric descriptors that uniquely characterize a segment, and, on the basis of these descriptors, we show how to aggregate parts of primitives (segments). Experiments on both synthetic and industrial scans reveal the robustness of the primitive fitting method and its effectiveness for inferring relations among segments.
翻译:从点云自动创建几何模型在CAD(例如逆向工程、制造、组装)和一般而言在形状建模和处理方面有许多应用。鉴于代表人造天体的分点云层,我们建议了一种承认简单几何原始及其相互关系的方法。我们的方法以Hough变形(HT)为基础,以其处理噪音、缺失部件和外部线的能力为基础。我们采用的方法是一种处理分点云的新技术,通过表决程序,能够提供每个原始类型特征的几何参数的初步估计。我们通过使用这些估计,将最佳解决办法的搜索定位于一个尺寸被缩小的参数空间,从而有效地将HT扩展至比文献中通常发现的更原始的地方,即飞机和空间。然后,我们抽取一些具有独特特征的几何参数描述仪,并根据这些描述仪,我们展示了原始特征的综合部分(区块)如何进行。在合成和工业扫描中,对合成和工业扫描方法的精度都显示其精准性。