We propose using machine learning and artificial neural networks (ANNs) to enhance residual-based stabilization methods for advection-dominated differential problems. Specifically, in the context of the finite element method, we consider the streamline upwind Petrov-Galerkin (SUPG) stabilization method and we employ ANNs to optimally choose the stabilization parameter on which the method relies. We generate our dataset by solving optimization problems to find the optimal stabilization parameters that minimize the distances among the numerical and the exact solutions for different data of differential problem and the numerical settings of the finite element method, e.g., mesh size and polynomial degree. The dataset generated is used to train the ANN, and we used the latter ``online'' to predict the optimal stabilization parameter to be used in the SUPG method for any given numerical setting and problem data. We show, by means of 1D and 2D numerical tests for the advection-dominated differential problem, that our ANN approach yields more accurate solution than using the conventional stabilization parameter for the SUPG method.
翻译:我们建议使用机器学习和人工神经网络(ANNs)来强化基于剩余的稳定方法,解决以消化为主的差别问题。具体地说,在有限元素方法方面,我们考虑精简风上Petrov-Galerkin(SUPG)稳定法,我们使用ANNs来最佳选择该方法所依赖的稳定参数。我们通过解决优化问题来生成我们的数据集,以找到最佳的稳定参数,从而最大限度地减少差异问题不同数据之间的距离和确切解决办法,以及有限元素方法的数值设置,例如网格大小和多元度。产生的数据集用于培训ANN,我们使用后者“在线”来预测任何特定数字设置和问题数据在SUPG方法中使用的最佳稳定参数。我们用1D和2D数字测试方法来测定以适应为主的差别问题,显示我们的ANN方法比使用常规稳定参数为SUPG方法提供更准确的解决方案。