The lack of insight into deep learning systems hinders their systematic design. In science and engineering, modeling is a methodology used to understand complex systems whose internal processes are opaque. Modeling replaces a complex system with a simpler surrogate that is more amenable to interpretation. Drawing inspiration from this, we construct a class of surrogate models for neural networks using Gaussian processes. Rather than deriving the kernels for certain limiting cases of neural networks, we learn the kernels of the Gaussian process empirically from the naturalistic behavior of neural networks. We first evaluate our approach with two case studies inspired by previous theoretical studies of neural network behavior in which we capture neural network preferences for learning low frequencies and identify pathological behavior in deep neural networks. In two further practical case studies, we use the learned kernel to predict the generalization properties of neural networks.
翻译:对深层学习系统缺乏洞察力妨碍了它们的系统设计。在科学和工程学中,建模是一种用来理解内部过程不透明的复杂系统的方法。建模用更便于解释的更简单的代孕器取代复杂的系统。从中汲取灵感,我们用高斯过程为神经网络构建了一组替代模型。我们没有从神经网络的某些有限案例中得出内核,而是从神经网络的自然行为中吸取了高斯过程的内核经验。我们首先用先前对神经网络行为的理论研究所启发的两个案例研究来评估我们的方法,我们从这些理论研究中获取神经网络对学习低频率的偏好,并查明深神经网络中的病理行为。在进一步的两个实际案例研究中,我们用所学的内核来预测神经网络的一般特性。