We consider the problem of estimating the marginal independence structure of a Bayesian network from observational data in the form of an undirected graph called the unconditional dependence graph. We show that unconditional dependence graphs correspond to the graphs having equal independence and intersection numbers. Using this observation, a Gr\"obner basis for a toric ideal associated to unconditional dependence graphs is given and then extended by additional binomial relations to connect the space of unconditional dependence graphs. An MCMC method, called GrUES (Gr\"obner-based Unconditional Equivalence Search), is implemented based on the resulting moves and applied to synthetic Gaussian data. GrUES recovers the true marginal independence structure via a BIC-optimal or MAP estimate at a higher rate than simple independence tests while also yielding an estimate of the posterior, for which the $20\%$ HPD credible sets include the true structure at a high rate for graphs with density at least $0.5$.
翻译:我们考虑过以一个称为无条件依赖性图的非方向图表的形式,从观测数据中估计巴伊西亚网络的边际独立结构的问题。我们显示,无条件依赖性图表与具有等量独立和交叉数字的图表相对应。使用这一观察,为与无条件依赖性图表相关的美化理想提供了Gr\"obner基础,然后通过额外的二元关系将无条件依赖性图的空间连接起来。一个称为Grues(Gr\'obner基于“无条件等值搜索”)的MCMMC方法基于由此产生的移动并应用于合成高斯数据。GruesS通过比简单独立测试高的BIC-最佳或MAP估计恢复了真正的边际独立结构,同时得出了对远地点的估计值,为此,20 $HPD的可靠数据集包含以密度至少为0.5美元的高速度图表的真实结构。