Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.
翻译:基于视觉的情绪分析(ABSA)比一般情绪分析(ABSA)能够提供比一般情绪分析更详细的信息,因为它旨在预测文本中特定方面或实体的情绪极化。我们把以前的方法归纳成两个子任务:方面类情绪分析(ACSA)和方面-长期情绪分析(ATSA)。大多数以前的方法使用长期的短期记忆和关注机制来预测有关目标的情绪极化,因为这些目标往往比较复杂,需要更多培训时间。我们提出了一个以进化神经网络和定位机制为基础的模型,这种模型更准确和有效。首先,新型的Gated Tanh-ReLU单元可以选择根据特定方面或实体输出情绪特征。结构比现有模型中使用的注意层简单得多。第二,我们模型的计算在培训期间可以很容易地平行进行,因为共生层不象LSTM层那样有时间依赖时间,而格化单元也独立运作。SemEval数据集实验显示了我们模型的效率和效益。