Deep generative models (DGMs) are data-eager because learning a complex model on limited data suffers from a large variance and easily overfits. Inspired by the classical perspective of the bias-variance tradeoff, we propose regularized deep generative model (Reg-DGM), which leverages a nontransferable pre-trained model to reduce the variance of generative modeling with limited data. Formally, Reg-DGM optimizes a weighted sum of a certain divergence and the expectation of an energy function, where the divergence is between the data and the model distributions, and the energy function is defined by the pre-trained model w.r.t. the model distribution. We analyze a simple yet representative Gaussian-fitting case to demonstrate how the weighting hyperparameter trades off the bias and the variance. Theoretically, we characterize the existence and the uniqueness of the global minimum of Reg-DGM in a non-parametric setting and prove its convergence with neural networks trained by gradient-based methods. Empirically, with various pre-trained feature extractors and a data-dependent energy function, Reg-DGM consistently improves the generation performance of strong DGMs with limited data and achieves competitive results to the state-of-the-art methods.
翻译:深基因模型(DGM)是数据管理员,因为了解关于有限数据的复杂模型存在巨大差异,而且容易过度使用。根据偏差取舍的古典观点,我们建议采用常规化的深基因模型(Reg-DGM),利用非转让的预先培训模型,利用有限数据减少基因模型的差异。形式上,Reg-DGM优化了某种差异的加权和对能源功能的预期,这种差异是数据和模型分布之间的差异,而能源功能是由预先培训的模型 w.r.t. 模型分布界定的。我们分析一个简单但有代表性的Gaussian模型,以展示超参数交易的权重如何摆脱偏差和差异。理论上,我们用非参数设置来描述Reg-DGM全球最低值的存在和独特性,并证明它与由梯度法方法培训的神经网络的趋同性。具有活力的,由各种预先培训的特征提取器和依赖数据的能源功能界定。我们分析一个简单但有代表性的、具有代表性的Gaussian-DGM(Reg-D-DGM)持续地改进了数据生成的强度。