Bernstein's theorem (also called Hausdorff--Bernstein--Widder theorem) enables the integral representation of a completely monotonic function. We introduce a finite completely monotonic function, which is a completely monotonic function with a finite positive integral interval of the integral representation. We consider the exponential sum approximation of a finite completely monotonic function based on the Gaussian quadrature with a variable transformation. If the variable transformation is analytic on an open Bernstein ellipse, the maximum absolute error decreases at least geometrically with respect to the number of exponential functions. The error of the Gaussian quadrature is also expanded by basis functions associated with the variable transformation. The basis functions form a Chebyshev system on the positive real axis. The maximization of the decreasing rate of the error bound can be achieved by constructing a one-to-one mapping of an open Bernstein ellipse onto the right half-plane. The mapping is realized by the composition of Jacobi's delta amplitude function (also called dn function) and the multivalued inverse cosine function. The function is single-valued, meromorphic, and strictly absolutely monotonic function. The corresponding basis functions are eigenfunctions of a fourth order differential operator, satisfy orthogonality conditions, and have the interlacing property of zeros by Kellogg's theorem. We also analyze the initialization method of the Remez algorithm based on a Gaussian quadrature to compute the best exponential sum approximation of a finite completely monotonic function. The numerical experiments are conducted by using finite completely monotonic functions related to the inverse power function.


翻译:Bernstein 的定理( 也称为Hausdorf- Bernstein- Widder- Widder 定理) 使完全单调函数的完整表达。 我们引入了一个完全的完全单调函数, 这是一种完全的单调函数, 与整体代表的有限正内断间隔。 我们考虑基于高斯方形的有限完全单调函数的指数和近似近似值, 并进行变量转换。 如果变量转换在开放的 Bernstein 椭圆上分析, 与指数函数的数量相比, 最大绝对误差至少几何性下降。 与变量转换相关的基函数也会扩大。 基函数在正正实际轴上形成一个 Chebyshev 系统。 通过在右翼半机上构造一个开放的 Bernstein Ellipse 映像素的一一一比一映射, 映射通过雅各布的三角形函数( 也称为 dnalutrial 函数) 和直径的直径的直径直径直径的直径直径直曲函数, 以直径的直径直径直径的直径的直径计算函数。 。 以直径的直判函数以直径直判的直判的直判函数是使用一个直判的直判。 。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月31日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员