To simulate bosons on a qubit- or qudit-based quantum computer, one has to regularize the theory by truncating infinite-dimensional local Hilbert spaces to finite dimensions. In the search for practical quantum applications, it is important to know how big the truncation errors can be. In general, it is not easy to estimate errors unless we have a good quantum computer. In this paper we show that traditional sampling methods on classical devices, specifically Markov Chain Monte Carlo, can address this issue with a reasonable amount of computational resources available today. As a demonstration, we apply this idea to the scalar field theory on a two-dimensional lattice, with a size that goes beyond what is achievable using exact diagonalization methods. This method can be used to estimate the resources needed for realistic quantum simulations of bosonic theories, and also, to check the validity of the results of the corresponding quantum simulations.
翻译:为了在基于qubit或qudit的量子计算机上模拟玻色子,必须将无限维局部希尔伯特空间截断为有限维。在寻找实际量子应用的过程中,了解截断误差的大小非常重要。一般来说,除非我们拥有一台好的量子计算机,否则很难估计误差。在这篇论文中,我们展示了传统的经典设备采样方法,特别是马尔科夫蒙特卡罗方法,可以用合理的计算资源解决这个问题。作为一项演示,我们将该思路应用于二维晶格上的标量场理论,其规模超出了使用精确对角化方法可达到的范围。该方法可用于估算实际量子模拟波色理论所需的资源,并检查相应量子模拟的结果的有效性。