Optimization problems involving minimization of a rank-one convex function over constraints modeling restrictions on the support of the decision variables emerge in various machine learning applications. These problems are often modeled with indicator variables for identifying the support of the continuous variables. In this paper we investigate compact extended formulations for such problems through perspective reformulation techniques. In contrast to the majority of previous work that relies on support function arguments and disjunctive programming techniques to provide convex hull results, we propose a constructive approach that exploits a hidden conic structure induced by perspective functions. To this end, we first establish a convex hull result for a general conic mixed-binary set in which each conic constraint involves a linear function of independent continuous variables and a set of binary variables. We then demonstrate that extended representations of sets associated with epigraphs of rank-one convex functions over constraints modeling indicator relations naturally admit such a conic representation. This enables us to systematically give perspective formulations for the convex hull descriptions of these sets with nonlinear separable or non-separable objective functions, sign constraints on continuous variables, and combinatorial constraints on indicator variables. We illustrate the efficacy of our results on sparse nonnegative logistic regression problems.
翻译:在机器学习的各种应用中,涉及支持决策变量的约束模型的一阶凸函数的最小化的优化问题经常被建模为使用指标变量。本文通过透视重构技术研究这类问题的紧凑扩展形式。与大多数先前的研究依赖于支持函数和分离式编程技术来提供凸壳结果不同,我们提出了一种构造性方法,利用透视函数引发的隐藏锥形结构。为此,我们首先建立了一个一般锥形混合二进制集合的凸壳结果,在这个集合中,每个锥形约束涉及独立连续变量的线性函数和一组二进制变量。然后,我们证明了用于描述支持指标关系的约束下的一阶凸函数外延形式的扩展表示自然地具有这样一个锥形表示。这使我们能够系统地给出具有非线性可分离或不可分离的目标函数、连续变量的符号约束和指标变量的组合约束的这些集合的凸壳描述的透视公式。我们通过稀疏非负逻辑回归问题证明了我们结果的有效性。