In this work, we develop an approach mentioned by da Veiga and Gamboa in 2013. It consists in extending the very interestingpoint of view introduced in \cite{gine2008simple} to estimate general nonlinear integral functionals of a density on the real line, by using empirically a kernel estimator erasing the diagonal terms. Relaxing the positiveness assumption on the kernel and choosing a kernel of order large enough, we are able to prove a central limit theorem for estimating Sobol' indices of any order (the bias is killed thanks to this signed kernel).
翻译:在这项研究中,我们开发了da Veiga和Gamboa 2013年提出的一种方法。这种方法扩展了\cite{gine2008simple}中引入的非常有趣的观点,即使用核估计器在实数线上消除对角线项来估计密度的一般非线性积分函数。通过选择一个足够大阶数的核并放宽核的正性假设,我们能够证明任何阶数的Sobol指数的一个中心极限定理(因为这个带符号的核消除了偏置)的估计方法。