Generalization error bounds are critical to understanding the performance of machine learning models. In this work, we propose a new information-theoretic based generalization error upper bound applicable to supervised learning scenarios. We show that our general bound can specialize in various previous bounds. We also show that our general bound can be specialized under some conditions to a new bound involving the Jensen-Shannon information between a random variable modelling the set of training samples and another random variable modelling the hypothesis. We also prove that our bound can be tighter than mutual information-based bounds under some conditions.
翻译:通用错误界限对于理解机器学习模型的性能至关重要。 在这项工作中,我们提出一个新的基于信息理论的概括性错误,适用于受监督的学习情景。我们表明,我们的一般约束可以专门适用于以往的各种界限。我们还表明,在某些条件下,我们的一般约束可以专门适用于涉及Jensen-Shannon信息的新约束,在随机变量模型、成套培训样本和另一个随机变量模型之间,在假设中,我们的一般约束可以比基于信息的相互约束更为严格。