Generalization error bounds are critical to understanding the performance of machine learning models. In this work, we propose a new information-theoretic based generalization error upper bound applicable to supervised learning scenarios. We show that our general bound can specialize in various previous bounds. We also show that our general bound can be specialized under some conditions to a new bound involving the Jensen-Shannon information between a random variable modelling the set of training samples and another random variable modelling the hypothesis. We also prove that our bound can be tighter than mutual information-based bounds under some conditions.


翻译:通用错误界限对于理解机器学习模型的性能至关重要。 在这项工作中,我们提出一个新的基于信息理论的概括性错误,适用于受监督的学习情景。我们表明,我们的一般约束可以专门适用于以往的各种界限。我们还表明,在某些条件下,我们的一般约束可以专门适用于涉及Jensen-Shannon信息的新约束,在随机变量模型、成套培训样本和另一个随机变量模型之间,在假设中,我们的一般约束可以比基于信息的相互约束更为严格。

0
下载
关闭预览

相关内容

学习方法的泛化能力(Generalization Error)是由该方法学习到的模型对未知数据的预测能力,是学习方法本质上重要的性质。现实中采用最多的办法是通过测试泛化误差来评价学习方法的泛化能力。泛化误差界刻画了学习算法的经验风险与期望风险之间偏差和收敛速度。一个机器学习的泛化误差(Generalization Error),是一个描述学生机器在从样品数据中学习之后,离教师机器之间的差距的函数。
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年3月6日
Arxiv
0+阅读 · 2021年3月5日
Arxiv
126+阅读 · 2020年9月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Arxiv
0+阅读 · 2021年3月6日
Arxiv
0+阅读 · 2021年3月5日
Arxiv
126+阅读 · 2020年9月6日
Top
微信扫码咨询专知VIP会员