Meta-learning algorithms adapt quickly to new tasks that are drawn from the same task distribution as the training tasks. The mechanism leading to fast adaptation is the conditioning of a downstream predictive model on the inferred representation of the task's underlying data generative process, or \emph{function}. This \emph{meta-representation}, which is computed from a few observed examples of the underlying function, is learned jointly with the predictive model. In this work, we study the implications of this joint training on the transferability of the meta-representations. Our goal is to learn meta-representations that are robust to noise in the data and facilitate solving a wide range of downstream tasks that share the same underlying functions. To this end, we propose a decoupled encoder-decoder approach to supervised meta-learning, where the encoder is trained with a contrastive objective to find a good representation of the underlying function. In particular, our training scheme is driven by the self-supervision signal indicating whether two sets of examples stem from the same function. Our experiments on a number of synthetic and real-world datasets show that the representations we obtain outperform strong baselines in terms of downstream performance and noise robustness, even when these baselines are trained in an end-to-end manner.


翻译:元学习算法快速适应与培训任务相同的任务分配所产生的新任务。 导致快速适应的机制是下游预测模型的设置, 以该任务的基本数据基因化过程或\emph{函数}的推断表示为条件。 此计算法是从基本功能的几个观察到的例子中得出的, 与预测模型共同学习的。 在这项工作中, 我们研究这一联合培训对元代表的可转移性的影响。 我们的目标是学习对数据噪音具有活力的元代表法, 并便利解决一系列具有相同基本功能的下游任务。 为此, 我们提议采用解码编码解码解码解码方法来监督元学习, 以对比性为目的对编码进行训练, 以找到基本功能的良好代表性。 特别是, 我们的培训计划是由自我监督信号驱动的, 表明两组例子是否来自同一功能。 我们关于合成和真实世界数据组的实验, 有助于解决一系列具有相同基本功能的下游任务。 为此, 我们提出了一种分离的编码解码解码解码解码解码法方法, 显示, 当我们经过训练的下游级标准中, 显示, 一种强型的基线显示, 我们的下游级的精确度基线显示, 的基线显示, 我们的精确度是强型基准。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
5+阅读 · 2020年10月21日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
19+阅读 · 2020年7月21日
Arxiv
13+阅读 · 2020年4月12日
Contrastive Representation Distillation
Arxiv
5+阅读 · 2019年10月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Top
微信扫码咨询专知VIP会员