The no free lunch theorem states that no model is better suited to every problem. A question that arises from this is how to design methods that propose optimizers tailored to specific problems achieving state-of-the-art performance. This paper addresses this issue by proposing the use of meta-learning to infer population-based black-box optimizers that can automatically adapt to specific classes of problems. We suggest a general modeling of population-based algorithms that result in Learning-to-Optimize POMDP (LTO-POMDP), a meta-learning framework based on a specific partially observable Markov decision process (POMDP). From that framework's formulation, we propose to parameterize the algorithm using deep recurrent neural networks and use a meta-loss function based on stochastic algorithms' performance to train efficient data-driven optimizers over several related optimization tasks. The learned optimizers' performance based on this implementation is assessed on various black-box optimization tasks and hyperparameter tuning of machine learning models. Our results revealed that the meta-loss function encourages a learned algorithm to alter its search behavior so that it can easily fit into a new context. Thus, it allows better generalization and higher sample efficiency than state-of-the-art generic optimization algorithms, such as the Covariance matrix adaptation evolution strategy (CMA-ES).


翻译:无免费午餐理论显示,没有任何模式更适合每个问题。 由此产生的一个问题是, 如何设计一些方法, 提出针对达到最新业绩的具体问题而量身定制的优化器。 本文通过建议使用元学习来推断基于人口的黑箱优化器, 从而自动适应特定类别的问题。 我们建议对基于人口的算法进行总体建模, 从而导致在特定部分可见的Markov 决策程序( POMDP) 的基础上对 POMDP (LTO- POMDP) (LTO- POMDP) 进行学习到操作的元学习框架 。 从这个框架的编制中, 我们建议使用深度的经常性神经网络来对算法进行参数化, 并使用基于随机算法的元损失函数, 来培训高效的数据驱动优化器, 以适应某些相关的优化任务。 我们建议对基于这一执行过程的基于学习的基于各种黑箱优化任务和机器学习模型的超度调整的算法进行总体化评估。 我们的计算结果显示, 元损失功能鼓励一种学习的算法, 来改变其搜索行为, 以便很容易地适应新的标准化战略。 。 因此, 能够将系统化, 更精确化, 将它作为新的系统化, 。 系统化, 改进, 改进, 改进, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化,, 系统化,, 系统化, 系统化, 系统化, 系统化, 系统化,, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化, 系统化,, 系统化, 系统化, 系统化, 系统化,, 系统化,

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
元学习(meta learning) 最新进展综述论文
专知会员服务
279+阅读 · 2020年5月8日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
13+阅读 · 2019年1月26日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员