We propose a projection-free conditional gradient-type algorithm for smooth stochastic multi-level composition optimization, where the objective function is a nested composition of $T$ functions and the constraint set is a closed convex set. Our algorithm assumes access to noisy evaluations of the functions and their gradients, through a stochastic first-order oracle satisfying certain standard unbiasedness and second moment assumptions. We show that the number of calls to the stochastic first-order oracle and the linear-minimization oracle required by the proposed algorithm, to obtain an $\epsilon$-stationary solution, are of order $\mathcal{O}_T(\epsilon^{-2})$ and $\mathcal{O}_T(\epsilon^{-3})$ respectively, where $\mathcal{O}_T$ hides constants in $T$. Notably, the dependence of these complexity bounds on $\epsilon$ and $T$ are separate in the sense that changing one does not impact the dependence of the bounds on the other. Moreover, our algorithm is parameter-free and does not require any (increasing) order of mini-batches to converge unlike the common practice in the analysis of stochastic conditional gradient-type algorithms.
翻译:我们提出一个无预测的有条件梯度类型算法,用于平滑随机多级组成优化,其中,目标函数是美元功能的嵌套构成,约束装置是封闭的锥形组。我们的算法假设通过一个随机第一阶,对功能及其梯度分别进行噪音评估,通过一个随机第一阶,满足某些标准的公正性和第二秒假设。我们表明,对随机第一阶和拟议算法所要求的线性最小化或极小的调用次数是不同的,因为为了获得美元固定的解决方案,改变一个不会影响底线对另一个底线的依赖。此外,我们的标准算法要求使用一个固定的基数,而不是一个普通的基数级分析。此外,我们的标准算法要求使用一个普通的基数级,而不是一个固定的基数级分析。