普林斯顿大学在19年春季学期,开设了COS 598D《机器学习优化》课程,课程主要介绍机器学习中出现的优化问题,以及解决这些问题的有效算法。前不久,课程教授Elad Hazan将其精心准备的课程讲义开放了出来,讲义内容详实循序渐进,非常适合想要入门机器学习的同学阅读。

COS 598D:Optimization for Machine Learning(机器学习优化)是普林斯顿大学在19年春季学期开设的课程。课程主要介绍机器学习中出现的优化问题,以及解决这些问题的有效算法。

课程内容涵盖:

  • Introduction to convex analysis
  • first-order methods, convergence analysis
  • generalization and regret minimization
  • regularization
  • gradient descent++:
    • acceleration
    • variance reduction
    • adaptive preconditioning
  • 2nd order methods in linear time
  • projection-free methods and the Frank-Wolfe algorithm
  • zero-order optimization, convex bandit optimization
  • optimization for deep learning: large scale non-convex optimization
成为VIP会员查看完整内容
84

相关内容

梯度下降法是一个最优化算法,通常也称为最速下降法。最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的。最速下降法是用负梯度方向为搜索方向的,最速下降法越接近目标值,步长越小,前进越慢。可以用于求解非线性方程组
专知会员服务
82+阅读 · 2020年5月16日
普林斯顿大学经典书《在线凸优化导论》,178页pdf
专知会员服务
184+阅读 · 2020年2月3日
【课程推荐】普林斯顿陈丹琦COS 484: 自然语言处理课程
专知会员服务
82+阅读 · 2019年12月11日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
【课程】概率图模型,卡内基梅隆大学邢波
专知会员服务
69+阅读 · 2019年11月4日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
45+阅读 · 2019年10月29日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
统计学习方法第一版课程PPT
AINLP
13+阅读 · 2019年5月14日
多伦多大学“神经网络与机器学习导论(2018年春季)
人工智能头条
14+阅读 · 2018年4月3日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Revealing the Dark Secrets of BERT
Arxiv
4+阅读 · 2019年9月11日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
5+阅读 · 2019年4月21日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
Arxiv
6+阅读 · 2018年4月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
82+阅读 · 2020年5月16日
普林斯顿大学经典书《在线凸优化导论》,178页pdf
专知会员服务
184+阅读 · 2020年2月3日
【课程推荐】普林斯顿陈丹琦COS 484: 自然语言处理课程
专知会员服务
82+阅读 · 2019年12月11日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
【课程】概率图模型,卡内基梅隆大学邢波
专知会员服务
69+阅读 · 2019年11月4日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
45+阅读 · 2019年10月29日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关论文
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Revealing the Dark Secrets of BERT
Arxiv
4+阅读 · 2019年9月11日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
5+阅读 · 2019年4月21日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
Arxiv
6+阅读 · 2018年4月24日
Arxiv
5+阅读 · 2017年12月14日
微信扫码咨询专知VIP会员