项目名称: 基于神经网络和强化学习的车辆装配系统中的多载量小车实时调度方法

项目编号: No.71471135

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 管理科学

项目作者: 周炳海

作者单位: 同济大学

项目金额: 56万元

中文摘要: 本项目旨在研究并解决一类先进车辆装配系统中的多载量小车动态调度问题。针对具有多系统耦合的多载量小车搬运系统的复杂性、动态性、组合优化等特点,建立动态调度问题域。在拓展和完善替代图的基础上,研究具有多资源约束的多载量小车调度问题的约束条件及形式化描述方法。分析多目标函数及约束集,建立带多目标、多约束的调度模型。研究基于人工神经网络和知识库的多载量小车实时调度规则组合优化选取方法。设计调度问题中相互关联的四个决策子问题(物料搬运任务生成决策问题、派遣决策问题、搬运任务选择决策以及排序决策问题)的调度决策算法。构造基于R-SMART的场景式强化学习算法,解决利于长期优化目标的调度决策问题。开发多载量小车调度原型系统,并进行应用验证。因此,通过本项目的研究可拓展多资源的调度与建模理论,丰富动态调度决策的启发式算法设计方法,对提高汽车制造企业的生产率以及生产管理水平有重要的理论意义和实际应用价值。

中文关键词: 车辆装配系统;多载量小车;启发式算法;建模;实时调度

英文摘要: This project aims to study and solve a kind of real-time scheduling problems of multiple-load carriers of advanced vehicle assembly systems.With characteristics of the complexity, dynamicity, and combinatorial optimizations etc., a dynamic scheduling problem domain of material handling systems of multiple-load carriers is established with the system coupling. In the expanding and improving of alternative graphs, the constraint conditions and a formal description method are researched for a scheduling problem of multiple resource constraints of multi-load carriers. Analyzing multiple-objective functions and constraint sets, the multi-objective scheduling model is established with multiple constraints. An optimization selection method of real-time scheduling rules is studied based on artificial neural network and knowledge bases. The scheduling algorithms of four interrelated decisions sub problems (material handling tasks generated decision problem, dispatching decision making problems, handling task selection decisions and ordering decision problem) are designed. To solve the optimization goal of the scheduling problem for a long time, the scenario reinforcement learning algorithm based on relaxed semi-Markov average reward technique(R - SMART) is constructed. A prototype system of multiple-load carriers is developed and verified for the applications. Therefore, through this research project, the scheduling and modeling theories can be expanded, and design methods of scheduling decision heuristic algorithms can be enriched. The research results of this project have important theoretical significances and practical values for being used to improve production efficiency of the automobile manufacturing enterprises and production management levels.

英文关键词: vehicle assembly systems;multiple-load carriers;heuristic algorithm;modeling;real-time scheduling

成为VIP会员查看完整内容
2

相关内容

启发式算法(heuristic algorithm)是相对于最优化算法提出的。一个问题的最优算法求得该问题每个实例的最优解。启发式算法可以这样定义:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度一般不能被预计。现阶段,启发式算法以仿自然体算法为主,主要有蚁群算法、模拟退火法、神经网络等。
军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
【经典书】全局优化算法:理论与应用,820页pdf
专知会员服务
150+阅读 · 2021年11月10日
专知会员服务
54+阅读 · 2021年9月18日
专知会员服务
34+阅读 · 2021年8月1日
专知会员服务
57+阅读 · 2021年6月1日
专知会员服务
64+阅读 · 2021年5月3日
深度强化学习在智能制造中的应用展望综述
专知会员服务
96+阅读 · 2021年1月28日
专知会员服务
14+阅读 · 2020年12月12日
多智能体深度强化学习的若干关键科学问题
专知会员服务
186+阅读 · 2020年5月24日
知识图谱嵌入技术研究综述
专知
1+阅读 · 2021年11月11日
自动化所平行驾驶技术“闯入”极寒矿区
中国科学院自动化研究所
1+阅读 · 2021年6月9日
【数字化】制造业数字化转型的实战路线图
产业智能官
39+阅读 · 2019年9月10日
【APS】PCB企业如何实现APS自动排程系统
产业智能官
12+阅读 · 2018年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
29+阅读 · 2020年3月16日
Arxiv
11+阅读 · 2018年4月25日
小贴士
相关VIP内容
军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
【经典书】全局优化算法:理论与应用,820页pdf
专知会员服务
150+阅读 · 2021年11月10日
专知会员服务
54+阅读 · 2021年9月18日
专知会员服务
34+阅读 · 2021年8月1日
专知会员服务
57+阅读 · 2021年6月1日
专知会员服务
64+阅读 · 2021年5月3日
深度强化学习在智能制造中的应用展望综述
专知会员服务
96+阅读 · 2021年1月28日
专知会员服务
14+阅读 · 2020年12月12日
多智能体深度强化学习的若干关键科学问题
专知会员服务
186+阅读 · 2020年5月24日
相关资讯
知识图谱嵌入技术研究综述
专知
1+阅读 · 2021年11月11日
自动化所平行驾驶技术“闯入”极寒矿区
中国科学院自动化研究所
1+阅读 · 2021年6月9日
【数字化】制造业数字化转型的实战路线图
产业智能官
39+阅读 · 2019年9月10日
【APS】PCB企业如何实现APS自动排程系统
产业智能官
12+阅读 · 2018年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员