This paper focuses on stochastic saddle point problems with decision-dependent distributions. These are problems whose objective is the expected value of a stochastic payoff function, where random variables are drawn from a distribution induced by a distributional map. For general distributional maps, the problem of finding saddle points is in general computationally burdensome, even if the distribution is known. To enable a tractable solution approach, we introduce the notion of equilibrium points -- which are saddle points for the stationary stochastic minimax problem that they induce -- and provide conditions for their existence and uniqueness. We demonstrate that the distance between the two solution types is bounded provided that the objective has a strongly-convex-strongly-concave payoff and a Lipschitz continuous distributional map. We develop deterministic and stochastic primal-dual algorithms and demonstrate their convergence to the equilibrium point. In particular, by modeling errors emerging from a stochastic gradient estimator as sub-Weibull random variables, we provide error bounds in expectation and in high probability that hold for each iteration. Moreover, we show convergence to a neighborhood almost surely. Finally, we investigate a condition on the distributional map -- which we call opposing mixture dominance -- that ensures that the objective is strongly-convex-strongly-concave. We tailor the convergence results for the primal-dual algorithms to this opposing mixture dominance setup.
翻译:本文侧重于基于决定的分布的分流点问题。 这些问题的客观目标是随机性报酬功能的预期值, 其中随机变量来自分布式分布图的随机变量。 对于一般分布式分布图, 找到马鞍点的问题一般是计算繁琐的, 即使分布为已知的。 为了能够采用可移植的解决方案方法, 我们引入了平衡点的概念 -- 它们是固定的分流性精度微缩压问题所引发的分流点 -- 并为它们的存在和独特性提供了条件。 我们证明两种解决办法类型之间的距离是受约束的, 只要目标具有强烈的混凝固强的混凝固支付率和利普施奇茨连续分布式分布图。 我们开发了确定性和随机混合的算法, 并展示了它们与平衡点的趋同点的趋同。 特别是, 我们通过模拟从固定的梯度定的梯度定的精度测度的微随机变量, 我们提供了预期的和高度概率的距离, 以维持每个分流式对等的分流率性结果 。 最后, 我们展示了我们所设定的正态的分系的分度, 。