We propose a stochastic conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms. Existing CGM variants for this template either suffer from slow convergence rates, or require carefully increasing the batch size over the course of the algorithm's execution, which leads to computing full gradients. In contrast, the proposed method, equipped with a stochastic average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques. In applications we put special emphasis on problems with a large number of separable constraints. Such problems are prevalent among semidefinite programming (SDP) formulations arising in machine learning and theoretical computer science. We provide numerical experiments on matrix completion, unsupervised clustering, and sparsest-cut SDPs.
翻译:我们建议采用一种随机的有条件梯度方法(CGM),以最大限度地减少混凝土的定数和定数目标,作为平滑和非悬浮条件的总和。这一模板的现有CGM变种要么是缓慢的趋同率,要么是在算法执行过程中需要谨慎地增加批量规模,从而导致完全计算梯度。相反,配有随机平均梯度估计器的拟议方法只需要一次迭代样本。然而,它保证快速趋同率与更先进的减少差异技术相匹配。在应用中,我们特别强调大量可分离的限制问题。这些问题在半成份的编程中普遍存在,这些问题出现在机器学习和理论计算机科学中。我们提供矩阵完成、无监督的集群和稀疏的SDP等数字实验。