We consider the online planning problem for a team of agents with on-board sensors to discover and track an unknown and time-varying number of moving objects from sensor measurements with uncertain measurement-object origins. Since the onboard sensors have limited field of views (FoV), the usual planning strategy based solely on either tracking detected objects or discovering unseen objects is inadequate. To address this, we formulate a new multi-objective multi-agent model for a predictive control problem based on information-theoretic criteria; cast as a partially observable Markov decision process (POMDP). The resulting multi-agent planning problem is exponentially complex due to the unknown data association between objects and multi-sensor measurements; hence, computing an optimal control action is intractable. We prove that the proposed multi-objective value function is a monotone submodular set function, and develop a greedy algorithm that can achieve an 0.5OPT compared to an optimal algorithm. We demonstrate the proposed solution via a series of numerical experiments with a real-world dataset.
翻译:我们考虑一个在线规划问题,对于一组带有机载传感器的代理来发现和跟踪未知且不断变化数量的移动对象,从具有不确定度的测量对象的来源的传感器测量中进行监测。由于机载传感器的视野受限,仅基于跟踪检测到的对象或发现未见过的对象的传统规划策略是不足够的。为了解决这个问题,我们制定了一个新的多目标多代理模型来解决基于信息理论准则的预测控制问题;把它作为一个部分可观察的马尔可夫决策过程 (POMDP) 来描述。由于对象与多传感器测量之间的未知数据关联,我们的多代理规划问题是指数复杂的;因此,计算最优控制动作是不可解的。我们证明,所提出的多目标价值函数是一个单调次模集函数,并开发了一个贪婪算法,可以实现相对于最优算法的 0.5 OPT。我们通过一系列具有实际意义的数据集的数值实验展示了所提出的解决方案。