The Bayesian paradigm has the potential to solve core issues of deep neural networks such as poor calibration and data inefficiency. Alas, scaling Bayesian inference to large weight spaces often requires restrictive approximations. In this work, we show that it suffices to perform inference over a small subset of model weights in order to obtain accurate predictive posteriors. The other weights are kept as point estimates. This subnetwork inference framework enables us to use expressive, otherwise intractable, posterior approximations over such subsets. In particular, we implement subnetwork linearized Laplace: We first obtain a MAP estimate of all weights and then infer a full-covariance Gaussian posterior over a subnetwork. We propose a subnetwork selection strategy that aims to maximally preserve the model's predictive uncertainty. Empirically, our approach is effective compared to ensembles and less expressive posterior approximations over full networks.
翻译:Bayesian 范式有可能解决深神经网络的核心问题,如校准差和数据效率低下。 唉, 将Bayesian推论推到大重量空间往往需要限制性近似值。 在这项工作中, 我们显示它足以对少量模型重量进行推论, 以便获得准确的预测后子体。 其他加权数保留为点估计值。 这个子网络推理框架让我们能够对这些子体进行表达性、 否则难以调和的子体近似。 特别是, 我们实施了子网络线性拉普尔: 我们首先获得了所有重量的MAP估计值, 然后推导出一个子网络上的完全可变性高斯登子体。 我们提出一个子网络选择战略, 目的是最大限度地保护模型的预测不确定性。 随机性地, 我们的方法与整个网络相比是有效的。