Object tracking is challenging as target objects often undergo drastic appearance changes over time. Recently, adaptive correlation filters have been successfully applied to object tracking. However, tracking algorithms relying on highly adaptive correlation filters are prone to drift due to noisy updates. Moreover, as these algorithms do not maintain long-term memory of target appearance, they cannot recover from tracking failures caused by heavy occlusion or target disappearance in the camera view. In this paper, we propose to learn multiple adaptive correlation filters with both long-term and short-term memory of target appearance for robust object tracking. First, we learn a kernelized correlation filter with an aggressive learning rate for locating target objects precisely. We take into account the appropriate size of surrounding context and the feature representations. Second, we learn a correlation filter over a feature pyramid centered at the estimated target position for predicting scale changes. Third, we learn a complementary correlation filter with a conservative learning rate to maintain long-term memory of target appearance. We use the output responses of this long-term filter to determine if tracking failure occurs. In the case of tracking failures, we apply an incrementally learned detector to recover the target position in a sliding window fashion. Extensive experimental results on large-scale benchmark datasets demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods in terms of efficiency, accuracy, and robustness.


翻译:目标对象的跟踪具有挑战性, 因为目标对象往往会随着时间而发生剧烈的外观变化。 最近, 适应性相关过滤器已经成功地应用到目标跟踪中。 但是, 依赖高度适应性相关过滤器的跟踪算法很容易因噪音更新而漂移。 此外, 由于这些算法无法保持目标外观的长期记忆, 它们无法从跟踪摄像视图中因严重隔离或目标消失而造成的失败中恢复过来。 在本文件中, 我们建议学习多个适应性相关过滤器, 长期和短期内存目标外观, 以稳健的物体跟踪为目的跟踪。 首先, 我们学习了一个内嵌式相关过滤器, 以积极学习率来精确定位目标对象对象。 我们考虑到周围环境的适当大小和特征表达方式。 其次, 我们学习了以预测规模变化目标目标目标目标位置为中心的一个特征金字塔的关联过滤器。 第三, 我们学习一个与保守的学习率的关联过滤器来保持目标外观的长期记忆。 我们用这个长期过滤器的输出反应来确定是否发生故障。 在跟踪失败时, 我们应用一个渐进式的检测性测试结果, 我们用一个渐进式的检测器来恢复目标定位定位定位定位位置, 以显示一个移动式的精确度标准, 展示一个移动式的精确度 。

11
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
4+阅读 · 2018年6月14日
Arxiv
8+阅读 · 2018年3月20日
Arxiv
9+阅读 · 2018年3月10日
Arxiv
8+阅读 · 2018年1月30日
Arxiv
7+阅读 · 2017年12月28日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Top
微信扫码咨询专知VIP会员