In this paper, we present a new method for detecting road users in an urban environment which leads to an improvement in multiple object tracking. Our method takes as an input a foreground image and improves the object detection and segmentation. This new image can be used as an input to trackers that use foreground blobs from background subtraction. The first step is to create foreground images for all the frames in an urban video. Then, starting from the original blobs of the foreground image, we merge the blobs that are close to one another and that have similar optical flow. The next step is extracting the edges of the different objects to detect multiple objects that might be very close (and be merged in the same blob) and to adjust the size of the original blobs. At the same time, we use the optical flow to detect occlusion of objects that are moving in opposite directions. Finally, we make a decision on which information we keep in order to construct a new foreground image with blobs that can be used for tracking. The system is validated on four videos of an urban traffic dataset. Our method improves the recall and precision metrics for the object detection task compared to the vanilla background subtraction method and improves the CLEAR MOT metrics in the tracking tasks for most videos.
翻译:在本文中, 我们展示了一种在城市环境中探测道路使用者的新方法, 从而改进了多天体跟踪。 我们的方法是一个输入前方图像, 并改进了天体探测和分割。 这个新图像可以用作跟踪器的输入, 使用背景减色的浅色。 第一步是为城市视频中所有框架创建前方图像。 然后, 我们从前方图像的原始空格开始, 将彼此相近、 类似光学流的空格合并起来。 下一步是提取不同对象的边缘, 以探测可能非常接近的多天体( 并合并在相同的空格中), 并调整原始黑格的大小。 与此同时, 我们使用光学流来检测向相反方向移动的天体的封闭性。 最后, 我们做出一项决定, 我们保留哪些信息, 以便用新的浅色图来构建新的浅色图像, 可以用来跟踪。 下一步是提取不同对象的边缘, 以提取不同对象的边缘, 来探测可能非常近( 并合并在相同的空格中) 并调整原始的光谱跟踪工具 。 我们在四个视频上改进了用于测量的底路路路段 。 。 改进了比 。 改进了最精确的校路路路路路路路路段 。