In this paper, a novel framework is established for uncertainty quantification via information bottleneck (IB-UQ) for scientific machine learning tasks, including deep neural network (DNN) regression and neural operator learning (DeepONet). Specifically, we first employ the General Incompressible-Flow Networks (GIN) model to learn a "wide" distribution fromnoisy observation data. Then, following the information bottleneck objective, we learn a stochastic map from input to some latent representation that can be used to predict the output. A tractable variational bound on the IB objective is constructed with a normalizing flow reparameterization. Hence, we can optimize the objective using the stochastic gradient descent method. IB-UQ can provide both mean and variance in the label prediction by explicitly modeling the representation variables. Compared to most DNN regression methods and the deterministic DeepONet, the proposed model can be trained on noisy data and provide accurate predictions with reliable uncertainty estimates on unseen noisy data. We demonstrate the capability of the proposed IB-UQ framework via several representative examples, including discontinuous function regression, real-world dataset regression and learning nonlinear operators for diffusion-reaction partial differential equation.


翻译:在本文中,为通过信息瓶颈(IB-UQ)为科学机器学习任务,包括深神经网络(DNN)回归和神经操作员学习(DeepONet)的深度神经网络(DiepONet)的回归和神经操作员学习(DiepONet),为通过信息瓶颈(IB-UQ)为科学机器学习任务,通过信息瓶颈(IB-UQ)为信息瓶颈(IB目标)为通过信息瓶颈(IB-UQ)为信息瓶颈(ID-UQ)为科学机器学习任务进行不确定性量化而进行不确定性量化,建立了新的框架。具体地说,我们首先使用通用不压缩-Flow网络(GIN)模型(GIN) 来学习“宽大”分布的观测数据数据。然后,根据信息瓶颈(IB-UQ)为某些可用于预测输出而从输入的输入到某些潜在代表的图像,我们通过若干具有代表性的例子来展示IB-UQ框架的能力,其中包括不连续的反向式的回归、真实数据定式数据-定式等等等等等等等等的模型。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员