Long-run covariance matrix estimation is the building block of time series inference problems. The corresponding difference-based estimator, which avoids detrending, has attracted considerable interest due to its robustness to both smooth and abrupt structural breaks and its competitive finite sample performance. However, existing methods mainly focus on estimators for the univariate process while their direct and multivariate extensions for most linear models are asymptotically biased. We propose a novel difference-based and debiased long-run covariance matrix estimator for functional linear models with time-varying regression coefficients, allowing time series non-stationarity, long-range dependence, state-heteroscedasticity and their mixtures. We apply the new estimator to i) the structural stability test, overcoming the notorious non-monotonic power phenomena caused by piecewise smooth alternatives for regression coefficients, and (ii) the nonparametric residual-based tests for long memory, improving the performance via the residual-free formula of the proposed estimator. The effectiveness of the proposed method is justified theoretically and demonstrated by superior performance in simulation studies, while its usefulness is elaborated by means of real data analysis.


翻译:长期协方差矩阵估计是时序推断问题的基础。与去趋势方法相比,相应的差分估计器由于其对于平滑和突变结构断点的鲁棒性以及其有竞争力的有限样本性能而受到广泛关注。然而,现有的方法主要集中于针对单变量过程的估计器,而大多数线性模型的其直接和多变量拓展都是渐近有偏误差的。本文提出了一种新的基于差异的且去偏的长期协方差矩阵估计方法,用于具有时变回归系数的函数线性模型,允许时序非稳定性、长期依赖、状态异方差性及其混合情况的存在。我们将这种新的估计器应用于 (i) 结构稳定性检验,克服了因回归系数分段平滑替代品而引起的臭名昭着的非单调功率现象,以及 (ii) 基于残差的非参数检验长期记忆性,通过所提出的估计器的无残差公式改进其性能。新方法的有效性在理论上得到证明,并通过模拟研究展示出卓越的性能,而其有用性也得到了通过实际数据分析的阐述。

0
下载
关闭预览

相关内容

在概率论和统计学中,协方差矩阵(也称为自协方差矩阵,色散矩阵,方差矩阵或方差-协方差矩阵)是平方矩阵,给出了给定随机向量的每对元素之间的协方差。 在矩阵对角线中存在方差,即每个元素与其自身的协方差。
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
专知会员服务
50+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【NeurIPS2022】时序解纠缠表示学习
专知
1+阅读 · 2022年10月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月16日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员