Pseudo-label based self training approaches are a popular method for source-free unsupervised domain adaptation. However, their efficacy depends on the quality of the labels generated by the source trained model. These labels may be incorrect with high confidence, rendering thresholding methods ineffective. In order to avoid reinforcing errors caused by label noise, we propose an uncertainty-aware mean teacher framework which implicitly filters incorrect pseudo-labels during training. Leveraging model uncertainty allows the mean teacher network to perform implicit filtering by down-weighing losses corresponding uncertain pseudo-labels. Effectively, we perform automatic soft-sampling of pseudo-labeled data while aligning predictions from the student and teacher networks. We demonstrate our method on several domain adaptation scenarios, from cross-dataset to cross-weather conditions, and achieve state-of-the-art performance in these cases, on the KITTI lidar target dataset.
翻译:以Peedo- 标签为基础的自我培训方法是无源、不受监督的域适应的流行方法。 但是,它们的效力取决于源培训模型产生的标签的质量。 这些标签可能充满信心,不正确,使门槛方法无效。 为了避免强化标签噪音造成的错误,我们提议一个有不确定性的、有意识的中性教师框架,在培训期间隐含过滤不正确的假标签。 利用模型的不确定性使中性教师网络能够通过低比重损失进行隐性过滤,与不确定的假标签相对应。 实际上,我们在调整学生和教师网络的预测时,对假标签数据进行自动软抽样检查。 我们在从交叉数据集到跨天条件等多个域适应情景上展示了我们的方法,并在KITTI Lidar目标数据集上在这些情况下实现了最先进的性能。