强化学习 cartpole_a3c

2017 年 7 月 21 日 CreateAMind

https://github.com/rlcode/reinforcement-learning/blob/master/2-cartpole/5-a3c/cartpole_a3c.py



import threading

import numpy as np

import tensorflow as tf

import pylab

import time

import gym

from keras.layers import Dense, Input

from keras.models import Model

from keras.optimizers import Adam

from keras import backend as K



# global variables for threading

episode = 0

scores = []


EPISODES = 2000


# This is A3C(Asynchronous Advantage Actor Critic) agent(global) for the Cartpole

# In this example, we use A3C algorithm

class A3CAgent:

def __init__(self, state_size, action_size, env_name):

# get size of state and action

self.state_size = state_size

self.action_size = action_size


# get gym environment name

self.env_name = env_name


# these are hyper parameters for the A3C

self.actor_lr = 0.001

self.critic_lr = 0.001

self.discount_factor = .99

self.hidden1, self.hidden2 = 24, 24

self.threads = 8


# create model for actor and critic network

self.actor, self.critic = self.build_model()


# method for training actor and critic network

self.optimizer = [self.actor_optimizer(), self.critic_optimizer()]


self.sess = tf.InteractiveSession()

K.set_session(self.sess)

self.sess.run(tf.global_variables_initializer())


# approximate policy and value using Neural Network

# actor -> state is input and probability of each action is output of network

# critic -> state is input and value of state is output of network

# actor and critic network share first hidden layer

def build_model(self):

state = Input(batch_shape=(None,  self.state_size))

shared = Dense(self.hidden1, input_dim=self.state_size, activation='relu', kernel_initializer='glorot_uniform')(state)


actor_hidden = Dense(self.hidden2, activation='relu', kernel_initializer='glorot_uniform')(shared)

action_prob = Dense(self.action_size, activation='softmax', kernel_initializer='glorot_uniform')(actor_hidden)


value_hidden = Dense(self.hidden2, activation='relu', kernel_initializer='he_uniform')(shared)

state_value = Dense(1, activation='linear', kernel_initializer='he_uniform')(value_hidden)


actor = Model(inputs=state, outputs=action_prob)

critic = Model(inputs=state, outputs=state_value)


actor._make_predict_function()

critic._make_predict_function()


actor.summary()

critic.summary()


return actor, critic


# make loss function for Policy Gradient

# [log(action probability) * advantages] will be input for the back prop

# we add entropy of action probability to loss

def actor_optimizer(self):

action = K.placeholder(shape=(None, self.action_size))

advantages = K.placeholder(shape=(None, ))


policy = self.actor.output


good_prob = K.sum(action * policy, axis=1)

eligibility = K.log(good_prob + 1e-10) * K.stop_gradient(advantages)

loss = -K.sum(eligibility)


entropy = K.sum(policy * K.log(policy + 1e-10), axis=1)


actor_loss = loss + 0.01*entropy


optimizer = Adam(lr=self.actor_lr)

updates = optimizer.get_updates(self.actor.trainable_weights, [], actor_loss)

train = K.function([self.actor.input, action, advantages], [], updates=updates)

return train


# make loss function for Value approximation

def critic_optimizer(self):

discounted_reward = K.placeholder(shape=(None, ))


value = self.critic.output


loss = K.mean(K.square(discounted_reward - value))


optimizer = Adam(lr=self.critic_lr)

updates = optimizer.get_updates(self.critic.trainable_weights, [], loss)

train = K.function([self.critic.input, discounted_reward], [], updates=updates)

return train


# make agents(local) and start training

def train(self):

# self.load_model('./save_model/cartpole_a3c.h5')

agents = [Agent(i, self.actor, self.critic, self.optimizer, self.env_name, self.discount_factor,

self.action_size, self.state_size) for i in range(self.threads)]


for agent in agents:

agent.start()


while True:

time.sleep(20)


plot = scores[:]

pylab.plot(range(len(plot)), plot, 'b')

pylab.savefig("./save_graph/cartpole_a3c.png")


self.save_model('./save_model/cartpole_a3c.h5')


def save_model(self, name):

self.actor.save_weights(name + "_actor.h5")

self.critic.save_weights(name + "_critic.h5")


def load_model(self, name):

self.actor.load_weights(name + "_actor.h5")

self.critic.load_weights(name + "_critic.h5")


# This is Agent(local) class for threading

class Agent(threading.Thread):

def __init__(self, index, actor, critic, optimizer, env_name, discount_factor, action_size, state_size):

threading.Thread.__init__(self)


self.states = []

self.rewards = []

self.actions = []


self.index = index

self.actor = actor

self.critic = critic

self.optimizer = optimizer

self.env_name = env_name

self.discount_factor = discount_factor

self.action_size = action_size

self.state_size = state_size


# Thread interactive with environment

def run(self):

global episode

env = gym.make(self.env_name)

while episode < EPISODES:

state = env.reset()

score = 0

while True:

action = self.get_action(state)

next_state, reward, done, _ = env.step(action)

score += reward


self.memory(state, action, reward)


state = next_state


if done:

episode += 1

print("episode: ", episode, "/ score : ", score)

scores.append(score)

self.train_episode(score != 500)

break


# In Policy Gradient, Q function is not available.

# Instead agent uses sample returns for evaluating policy

def discount_rewards(self, rewards, done=True):

discounted_rewards = np.zeros_like(rewards)

running_add = 0

if not done:

running_add = self.critic.predict(np.reshape(self.states[-1], (1, self.state_size)))[0]

for t in reversed(range(0, len(rewards))):

running_add = running_add * self.discount_factor + rewards[t]

discounted_rewards[t] = running_add

return discounted_rewards


# save <s, a ,r> of each step

# this is used for calculating discounted rewards

def memory(self, state, action, reward):

self.states.append(state)

act = np.zeros(self.action_size)

act[action] = 1

self.actions.append(act)

self.rewards.append(reward)


# update policy network and value network every episode

def train_episode(self, done):

discounted_rewards = self.discount_rewards(self.rewards, done)


values = self.critic.predict(np.array(self.states))

values = np.reshape(values, len(values))


advantages = discounted_rewards - values


self.optimizer[0]([self.states, self.actions, advantages])

self.optimizer[1]([self.states, discounted_rewards])

self.states, self.actions, self.rewards = [], [], []


def get_action(self, state):

policy = self.actor.predict(np.reshape(state, [1, self.state_size]))[0]

return np.random.choice(self.action_size, 1, p=policy)[0]



if __name__ == "__main__":

env_name = 'CartPole-v1'

env = gym.make(env_name)


state_size = env.observation_space.shape[0]

action_size = env.action_space.n


env.close()


global_agent = A3CAgent(state_size, action_size, env_name)

global_agent.train()


登录查看更多
9

相关内容

《强化学习》简介小册,24页pdf
专知会员服务
271+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【干货】强化学习介绍
人工智能学家
13+阅读 · 2018年6月24日
强化学习初探 - 从多臂老虎机问题说起
专知
10+阅读 · 2018年4月3日
一个强化学习 Q-learning 算法的简明教程
数据挖掘入门与实战
9+阅读 · 2018年3月18日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Arxiv
7+阅读 · 2018年12月26日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
11+阅读 · 2018年4月25日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【干货】强化学习介绍
人工智能学家
13+阅读 · 2018年6月24日
强化学习初探 - 从多臂老虎机问题说起
专知
10+阅读 · 2018年4月3日
一个强化学习 Q-learning 算法的简明教程
数据挖掘入门与实战
9+阅读 · 2018年3月18日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Top
微信扫码咨询专知VIP会员