Visual salient object detection (SOD) aims at finding the salient object(s) that attract human attention, while camouflaged object detection (COD) on the contrary intends to discover the camouflaged object(s) that hidden in the surrounding. In this paper, we propose a paradigm of leveraging the contradictory information to enhance the detection ability of both salient object detection and camouflaged object detection. We start by exploiting the easy positive samples in the COD dataset to serve as hard positive samples in the SOD task to improve the robustness of the SOD model. Then, we introduce a similarity measure module to explicitly model the contradicting attributes of these two tasks. Furthermore, considering the uncertainty of labeling in both tasks' datasets, we propose an adversarial learning network to achieve both higher order similarity measure and network confidence estimation. Experimental results on benchmark datasets demonstrate that our solution leads to state-of-the-art (SOTA) performance for both tasks.
翻译:视觉显要物体探测(SOD)旨在找到吸引人类注意的显要物体,而伪装物体探测(COD)则相反地打算发现隐藏在周围的伪装物体。在本文件中,我们提出了一个利用相互矛盾的信息加强显要物体探测和伪装物体探测的检测能力的范例。我们首先利用COD数据集中的简单正面样品作为SOD任务中的硬性正面样品,以提高SOD模型的坚固性能。然后,我们引入一个类似计量模块,以明确模拟这两项任务的矛盾特性。此外,考虑到在两个任务数据集中贴标签的不确定性,我们提议建立一个对抗性学习网络,以实现更高顺序的相似性测量和网络信任估计。基准数据集的实验结果显示,我们的解决方案导致两项任务的状态-艺术(SOTA)性表现。