Can we detect common objects in a variety of image domains without instance-level annotations? In this paper, we present a framework for a novel task, cross-domain weakly supervised object detection, which addresses this question. For this paper, we have access to images with instance-level annotations in a source domain (e.g., natural image) and images with image-level annotations in a target domain (e.g., watercolor). In addition, the classes to be detected in the target domain are all or a subset of those in the source domain. Starting from a fully supervised object detector, which is pre-trained on the source domain, we propose a two-step progressive domain adaptation technique by fine-tuning the detector on two types of artificially and automatically generated samples. We test our methods on our newly collected datasets containing three image domains, and achieve an improvement of approximately 5 to 20 percentage points in terms of mean average precision (mAP) compared to the best-performing baselines.


翻译:我们能否在没有实例级别注释的情况下在各种图像域中探测到共同对象? 在本文中,我们提出了一个新任务的框架,即跨域微弱监督的物体探测,解决了这个问题。 对于本文,我们可以在一个源域(例如自然图像)中获取带有实例级说明的图像,在一个目标域(例如水色)中获取带有图像级说明的图像。此外,在目标域中检测到的类别是源域中的所有类别或子类别。从在源域预先培训的完全受监督的物体探测器开始,我们建议了一种两步渐进的域适应技术,对两种人工和自动生成的样品的探测器进行微调。我们在新收集的包含三个图像域的数据集中测试了我们的方法,并在平均精确度(mAP)与最佳基准相比方面实现了大约5至20个百分点的改进。

6
下载
关闭预览

相关内容

Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
4+阅读 · 2018年10月5日
Arxiv
19+阅读 · 2018年5月17日
Arxiv
8+阅读 · 2018年4月12日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
相关论文
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
4+阅读 · 2018年10月5日
Arxiv
19+阅读 · 2018年5月17日
Arxiv
8+阅读 · 2018年4月12日
Arxiv
7+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员