Remarkable results have been achieved by DCNN based self-supervised depth estimation approaches. However, most of these approaches can only handle either day-time or night-time images, while their performance degrades for all-day images due to large domain shift and the variation of illumination between day and night images. To relieve these limitations, we propose a domain-separated network for self-supervised depth estimation of all-day images. Specifically, to relieve the negative influence of disturbing terms (illumination, etc.), we partition the information of day and night image pairs into two complementary sub-spaces: private and invariant domains, where the former contains the unique information (illumination, etc.) of day and night images and the latter contains essential shared information (texture, etc.). Meanwhile, to guarantee that the day and night images contain the same information, the domain-separated network takes the day-time images and corresponding night-time images (generated by GAN) as input, and the private and invariant feature extractors are learned by orthogonality and similarity loss, where the domain gap can be alleviated, thus better depth maps can be expected. Meanwhile, the reconstruction and photometric losses are utilized to estimate complementary information and depth maps effectively. Experimental results demonstrate that our approach achieves state-of-the-art depth estimation results for all-day images on the challenging Oxford RobotCar dataset, proving the superiority of our proposed approach.


翻译:DCNN基于自我监督的自我监督的深度估算方法取得了显著成果,然而,这些方法大多只能处理白天或夜间的日间或夜间图像,而这些方法大多只能处理白天或夜间的图像,而其性能由于大型域变换以及白天和夜间图像之间的光照变化而降低全天图像的全天图像。为了缓解这些限制,我们提议建立一个由域分离的网络,以自我监督的方式对全天图像进行深度估算。具体来说,为了减轻令人不安的术语(照明等)的负面影响,我们将日夜图像配对的信息分成两个相互补充的子空间:私人和不固定的域,前者包含白天和夜间图像的独特信息(照明等),而后者则含有基本的共享信息(文字等)。同时,为了保证昼夜图像包含相同的信息,域分隔网络将白天图像和相应的夜间图像(由GAN制方法生成)作为投入,我们将日间和夜间图像配对等信息分割成两个互补的子空间:私人和变异地特征提取器可以通过或分解性和类似性损失来学习,前者包含白天和夜间图像的独特域图像,前者包含昼图像的独特域图像,而前者包含白天和夜间图像图像,而夜图像图像图像图像,而前者包含的深度图像图像图像的深度图像,而后者含有的预期的深度图像,而含有的深度图像的深度图像,而含有的深度图像将使我们的深度图像将展示的深度图像将使我们的深度估算结果,从而得以利用的深度估算结果,从而得以利用的深度图,从而测量的深度图,从而测量的深度图,从而测量的深度图,从而展示的深度图,从而展示的深度图,从而可测量地测量性地测量性地测量性地测量性地测量性地测量地测量地测量的深度测得地测量性地算,从而测量的深度估算,从而测量结果,从而测量性地测量性地测量结果,从而地测量性地测量性地测量性地测量性地测量性地算,从而可测量性地测量性地算,从而可测量性地算,从而可测量性地测量性地测量性地测量性地测量性地测量性地测量性地测量性地算,从而可测量结果,从而地算的深度图,从而地算,从而可测量性地基的深度图,从而可测量性地算

7
下载
关闭预览

相关内容

CVPR 2019 论文大盘点-目标跟踪篇
极市平台
20+阅读 · 2019年8月8日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
领域自适应学习论文大列表
专知
71+阅读 · 2019年3月2日
(Python)3D人脸处理工具Face3d
AI研习社
7+阅读 · 2019年2月10日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
23+阅读 · 2021年3月4日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
VIP会员
相关VIP内容
相关资讯
CVPR 2019 论文大盘点-目标跟踪篇
极市平台
20+阅读 · 2019年8月8日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
领域自适应学习论文大列表
专知
71+阅读 · 2019年3月2日
(Python)3D人脸处理工具Face3d
AI研习社
7+阅读 · 2019年2月10日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Top
微信扫码咨询专知VIP会员