We introduce a new stochastic algorithm for solving entropic optimal transport (EOT) between two absolutely continuous probability measures $\mu$ and $\nu$. Our work is motivated by the specific setting of Monge-Kantorovich quantiles where the source measure $\mu$ is either the uniform distribution on the unit hypercube or the spherical uniform distribution. Using the knowledge of the source measure, we propose to parametrize a Kantorovich dual potential by its Fourier coefficients. In this way, each iteration of our stochastic algorithm reduces to two Fourier transforms that enables us to make use of the Fast Fourier Transform (FFT) in order to implement a fast numerical method to solve EOT. We study the almost sure convergence of our stochastic algorithm that takes its values in an infinite-dimensional Banach space. Then, using numerical experiments, we illustrate the performances of our approach on the computation of regularized Monge-Kantorovich quantiles. In particular, we investigate the potential benefits of entropic regularization for the smooth estimation of multivariate quantiles using data sampled from the target measure $\nu$.
翻译:我们引入了一种新的随机算法(EOT) 来解决两个绝对连续的概率度量 $mu美元和$nu$美元之间的热最佳运输。 我们的工作动力在于蒙古- Kantorovich 量子的具体设置。 源量量量量的元值要么是单位超立方体的统一分布, 要么是球体分布的统一。 我们利用源量的知识, 提议用它的Fourier系数对Kantorovich 的双重潜力进行对称。 这样, 我们的随机算法的每一次迭代都降为两个Fourier变换, 从而使我们能够使用快速四价变换法( FFT) 来实施快速的数值方法解决 EOT 。 我们研究我们的随机算法几乎可以肯定的趋同性算法在无限的宽度空间中取其值。 然后, 我们利用数字实验, 来说明我们计算正常的Monge- Kantorovich 量子的计算方法的性能表现。 特别是, 我们用数据来调查对目标平滑度估量的 $ 的摄像量进行摄像量进行 。