项目名称: 多尺度随机双曲-抛物方程的约化
项目编号: No.11301403
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 付红波
作者单位: 武汉纺织大学
项目金额: 23万元
中文摘要: 多尺度模型正引起数学、物理、生物和工程等诸多学科的极大关注。解决多尺度模型的核心问题之一就是对模型进行约化。前期的研究中,我们已建立了两时间尺度的随机抛物方程的维数约化原则。本项目中,我们将研究具有快慢两个时间尺度的耦合随机双曲-抛物方程的约化问题。大尺度效应和随机影响是解决该问题的两个主要难点。在平均化原理和随机分析理论的框架下,我们将研究两时间尺度的随机双曲-抛物方程的约化方程存在以及逼近原系统主要分量的必要条件、约化方程的数值算法、主要分量与约化方程的解过程在强收敛(轨道的逼近)及弱收敛(分布的逼近)意义下关于时间尺度参数的收敛速度。这些结果能够加深对多尺度随机系统演化行为的认识,为多尺度复杂系统的建模、仿真、参数估计、最优控制等问题提供严格的数学基础。
中文关键词: 约化;多尺度;随机双曲抛物方程;;
英文摘要: The problem of model reduction is one of the central problems in multiscale models that have recently attracted much attention from the research community across a number of disciplines ranging from applied mathematics to physics, biology and engineering. With our earlier contributions in dimension reduction for stochastic parabolic equations with double time scales, this project will focus on reduction principle for a class of coupled stochastic hyperbolic-parabolic partial differential equations (SHPPDEs) with fast and slow time scales. The effects of large scale and random influence are two main difficulties to solve this problem. With the averaging principle and stochastic analysis, we will study the necessary conditions so as that there exist a reduction equation which approximates the dominant component of the SHPPDEs with two time scales,the numerical scheme for the reduction equation, the explicit order of convergence(with respect to the parameter of time scale) in strong sense (approximation of trajectories) and in weak sense (approximation of laws) for the approximation of dominant component towards the solution of this reduction equation. The theoretical significance of our research will make progress in understanding the evolutionary behavior for stochastic systems with multiple scales. It also provi
英文关键词: reduction;multiple scales;stochastic hyperbolic-parabolic equations;;