项目名称: 多尺度随机双曲-抛物方程的约化

项目编号: No.11301403

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 付红波

作者单位: 武汉纺织大学

项目金额: 23万元

中文摘要: 多尺度模型正引起数学、物理、生物和工程等诸多学科的极大关注。解决多尺度模型的核心问题之一就是对模型进行约化。前期的研究中,我们已建立了两时间尺度的随机抛物方程的维数约化原则。本项目中,我们将研究具有快慢两个时间尺度的耦合随机双曲-抛物方程的约化问题。大尺度效应和随机影响是解决该问题的两个主要难点。在平均化原理和随机分析理论的框架下,我们将研究两时间尺度的随机双曲-抛物方程的约化方程存在以及逼近原系统主要分量的必要条件、约化方程的数值算法、主要分量与约化方程的解过程在强收敛(轨道的逼近)及弱收敛(分布的逼近)意义下关于时间尺度参数的收敛速度。这些结果能够加深对多尺度随机系统演化行为的认识,为多尺度复杂系统的建模、仿真、参数估计、最优控制等问题提供严格的数学基础。

中文关键词: 约化;多尺度;随机双曲抛物方程;;

英文摘要: The problem of model reduction is one of the central problems in multiscale models that have recently attracted much attention from the research community across a number of disciplines ranging from applied mathematics to physics, biology and engineering. With our earlier contributions in dimension reduction for stochastic parabolic equations with double time scales, this project will focus on reduction principle for a class of coupled stochastic hyperbolic-parabolic partial differential equations (SHPPDEs) with fast and slow time scales. The effects of large scale and random influence are two main difficulties to solve this problem. With the averaging principle and stochastic analysis, we will study the necessary conditions so as that there exist a reduction equation which approximates the dominant component of the SHPPDEs with two time scales,the numerical scheme for the reduction equation, the explicit order of convergence(with respect to the parameter of time scale) in strong sense (approximation of trajectories) and in weak sense (approximation of laws) for the approximation of dominant component towards the solution of this reduction equation. The theoretical significance of our research will make progress in understanding the evolutionary behavior for stochastic systems with multiple scales. It also provi

英文关键词: reduction;multiple scales;stochastic hyperbolic-parabolic equations;;

成为VIP会员查看完整内容
0

相关内容

【2021新书】分布式优化,博弈和学习算法,227页pdf
专知会员服务
227+阅读 · 2021年5月25日
专知会员服务
41+阅读 · 2021年4月2日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【干货书】贝叶斯推断随机过程,449页pdf
专知会员服务
151+阅读 · 2020年8月27日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【硬核书】不完全信息决策理论,467页pdf
专知会员服务
351+阅读 · 2020年6月24日
卷积神经网络(CNN)反向传播算法推导
极市平台
2+阅读 · 2021年12月15日
一文说清linux system load
阿里技术
0+阅读 · 2021年12月15日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
Softmax 函数和它的误解
极市平台
0+阅读 · 2021年10月15日
【ICML2021】低秩Sinkhorn 分解
专知
9+阅读 · 2021年8月20日
【经典书】数理统计学,142页pdf
专知
2+阅读 · 2021年3月25日
【干货书】贝叶斯推断随机过程,449页pdf
专知
29+阅读 · 2020年8月27日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Quantum Computing -- from NISQ to PISQ
Arxiv
1+阅读 · 2022年4月15日
Arxiv
20+阅读 · 2021年2月28日
小贴士
相关主题
相关VIP内容
【2021新书】分布式优化,博弈和学习算法,227页pdf
专知会员服务
227+阅读 · 2021年5月25日
专知会员服务
41+阅读 · 2021年4月2日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【干货书】贝叶斯推断随机过程,449页pdf
专知会员服务
151+阅读 · 2020年8月27日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【硬核书】不完全信息决策理论,467页pdf
专知会员服务
351+阅读 · 2020年6月24日
相关资讯
卷积神经网络(CNN)反向传播算法推导
极市平台
2+阅读 · 2021年12月15日
一文说清linux system load
阿里技术
0+阅读 · 2021年12月15日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
Softmax 函数和它的误解
极市平台
0+阅读 · 2021年10月15日
【ICML2021】低秩Sinkhorn 分解
专知
9+阅读 · 2021年8月20日
【经典书】数理统计学,142页pdf
专知
2+阅读 · 2021年3月25日
【干货书】贝叶斯推断随机过程,449页pdf
专知
29+阅读 · 2020年8月27日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员