We consider a subclass of $n$-player stochastic games, in which players have their own internal state/action spaces while they are coupled through their payoff functions. It is assumed that players' internal chains are driven by independent transition probabilities. Moreover, players can receive only realizations of their payoffs, not the actual functions, and cannot observe each other's states/actions. For this class of games, we first show that finding a stationary Nash equilibrium (NE) policy without any assumption on the reward functions is interactable. However, for general reward functions, we develop polynomial-time learning algorithms based on dual averaging and dual mirror descent, which converge in terms of the averaged Nikaido-Isoda distance to the set of $\epsilon$-NE policies almost surely or in expectation. In particular, under extra assumptions on the reward functions such as social concavity, we derive polynomial upper bounds on the number of iterates to achieve an $\epsilon$-NE policy with high probability. Finally, we evaluate the effectiveness of the proposed algorithms in learning $\epsilon$-NE policies using numerical experiments for energy management in smart grids.


翻译:我们考虑$n$人随机博弈的一个子类,其中玩家拥有自己的内部状态/动作空间,同时通过其支付函数相互耦合。假设玩家的内部链由独立的转移概率驱动。此外,玩家只能接收到他们的支付的实现,而不能观察彼此的状态/动作。对于这类游戏,我们首先证明在没有任何关于奖励函数的假设的情况下,找到平稳Nash均衡(NE)策略是交互作用的。然而,针对一般的奖励函数,我们基于双平均值和双镜像下降的多项式时间学习算法,它们在平均的Nikaido-Isoda距离几乎总是期望收敛到ε-NE策略集。特别的,在对于奖励函数的额外假设,例如社交凹性的情况下,我们导出了多项式的迭代次数的上界,以达到具有极高概率的ε-NE策略。最后,我们使用在智能电网能源管理中学习ε-NE策略的数值实验来评估所提出算法的有效性。

0
下载
关闭预览

相关内容

JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
【NeurIPS 2021】设置多智能体策略梯度的方差
专知会员服务
20+阅读 · 2021年10月24日
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
开源星际争霸2多智能体挑战smac
专知
17+阅读 · 2019年2月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
开源星际争霸2多智能体挑战smac
专知
17+阅读 · 2019年2月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员