During an infectious disease outbreak, public health decision-makers require real-time monitoring of disease transmission to respond quickly and intelligently. In these settings, a key measure of transmission is the instantaneous time-varying reproduction number, $R_t$. Estimation of this number using a Time-Since-Infection model relies on case-notification data and the distribution of the serial interval on the target population. However, in practice, case-notification data may contain measurement error due to variation in case reporting while available serial interval estimates may come from studies on non-representative populations. We propose a new data-driven method that accounts for particular forms of case-reporting measurement error and can incorporate multiple partially representative serial interval estimates into the transmission estimation process. In addition, we provide practical tools for automatically identifying measurement error patterns and determining when measurement error may not be adequately accounted for. We illustrate the potential bias undertaken by methods that ignore these practical concerns through a variety of simulated outbreaks. We then demonstrate the use of our method on data from the COVID-19 pandemic to estimate transmission and explore the relationships between social distancing, temperature, and transmission.
翻译:在传染病爆发期间,公共卫生决策者需要实时监测疾病传播情况以便快速、明智地做出回应。在这种情况下,传播的一个关键指标是瞬时时间变化的繁殖数$R_t$。使用时间自感染模型来估计此数值依赖于案例通报数据和目标人群连锁间隔的分布。然而,在实践中,情况通报数据可能包含测量误差,因为案例报告存在差异,同时可用的连锁间隔估计可能来自于非代表性人群的研究。我们提出了一种新的数据驱动方法,可以解决特定形式的情况报告测量误差,并可以将多个部分代表性的连锁间隔估计纳入到传播估计过程中。此外,我们提供了实用的工具,自动识别测量误差模式,并确定是否不足以解决测量误差问题。通过多种模拟爆发情况,我们说明了忽略这些实际问题的方法可能存在偏差。然后,我们示范了如何使用我们的方法来估计传播和探索社交疏远、温度与传播之间的关系,并使用COVID-19大流行的数据进行了演示。