The aim of this paper is to provide a new estimator of parameters for LARCH$(\infty)$ processes, and thus also for LARCH$(p)$ or GLARCH$(p,q)$ processes. This estimator results from minimising a contrast leading to a least squares estimator for the absolute values of the process. Strong consistency and asymptotic normality are shown, and convergence occurs at the rate $\sqrt n$ as well in short or long memory cases. Numerical experiments confirm the theoretical results and show that this new estimator significantly outperforms the smoothed quasi-maximum likelihood estimators or weighted least squares estimators commonly used for such processes.
翻译:本文旨在提出一种新的LARCH($\infty$)模型参数估计器,因此也适用于LARCH($p$)或GLARCH($p,q$)模型。该估计器是通过最小化对绝对值过程的最小二乘估计产生的对比得出的。证明其具有强相合性和渐进正态性,并且在短记忆或长记忆情形下收敛速度为$\sqrt n$。数值实验验证了理论结果,并表明该新估计器明显优于通常用于此类过程的平滑拟然似然估计器或加权最小二乘估计器。