项目名称: 多元函数的稀疏逼近与随机逼近

项目编号: No.11271199

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 叶培新

作者单位: 南开大学

项目金额: 75万元

中文摘要: 我们研究多元函数的稀疏逼近与随机逼近。这两种逼近方法能够有效地克服高维逼近中的维数效应。关于稀疏逼近,我们研究稀疏函数的压缩学习、流形上的学习、关于M-相干字典的贪婪逼近、压缩感知的lq最小化算法。关于随机逼近,我们研究量子计算模型的易处理性、随机量子计算模型下多元函数逼近的复杂性、混合光滑性的Besov函数类的逼近问题的线性与自适应随机算法、随机框架下的加权Sobolev类上的积分问题的易处理性。我们的预期结果将为逼近论、基于信息的复杂性理论的研究提供多个新的增长点,同时也对机器学习、压缩感知、量子计算的研究起到推进作用。

中文关键词: m项逼近;贪婪算法;正则化学习;压缩感知;Shannon取样

英文摘要: We study several problems related to sparse approximation and randomized approximation of multi-variate functions. These two types of approximation method can vanquish the curse of dimensionality in high dimensional approximation. For sparse approximation, we study compressed learning for sparse functions, learning on manifolds, greedy approximation with M-coherent dictionary, lq minimization for compressed sensing. For randomized approximation, we study tractability in the quantum computation model, complexity of multi-variate approximation in the quantum setting with randon bites、randomized approximation for Besov class with mixed smoothness, and tractability of randomized integration on weighted sobolev space. Our expected results will provide several new directs for the the study of approximation theory,information-based complexity theory. These results will also be helpful for the development of machine learning, compressed sensing and quantum computation.

英文关键词: m term approximation;greedy algorithm;regularized learning;compressed sensing;Shannon sampling

成为VIP会员查看完整内容
1

相关内容

【干货书】概率,统计与数据,513页pdf
专知会员服务
136+阅读 · 2021年11月27日
专知会员服务
21+阅读 · 2021年9月23日
专知会员服务
13+阅读 · 2021年8月29日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
【2021新书】分布式优化,博弈和学习算法,227页pdf
专知会员服务
227+阅读 · 2021年5月25日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
40+阅读 · 2021年2月12日
专知会员服务
29+阅读 · 2020年12月14日
专知会员服务
29+阅读 · 2020年7月31日
【牛津大学】多级蒙特卡洛方法,70页pdf
输入梯度惩罚与参数梯度惩罚的一个不等式
PaperWeekly
0+阅读 · 2021年12月27日
【经典书】信息论与统计: 教程,116页pdf
专知
1+阅读 · 2021年3月27日
【经典书】数理统计学,142页pdf
专知
2+阅读 · 2021年3月25日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
10+阅读 · 2020年11月26日
小贴士
相关主题
相关VIP内容
【干货书】概率,统计与数据,513页pdf
专知会员服务
136+阅读 · 2021年11月27日
专知会员服务
21+阅读 · 2021年9月23日
专知会员服务
13+阅读 · 2021年8月29日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
【2021新书】分布式优化,博弈和学习算法,227页pdf
专知会员服务
227+阅读 · 2021年5月25日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
40+阅读 · 2021年2月12日
专知会员服务
29+阅读 · 2020年12月14日
专知会员服务
29+阅读 · 2020年7月31日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员