We consider stochastic approximations of sampling algorithms, such as Stochastic Gradient Langevin Dynamics (SGLD) and the Random Batch Method (RBM) for Interacting Particle Dynamcs (IPD). We observe that the noise introduced by the stochastic approximation is nearly Gaussian due to the Central Limit Theorem (CLT) while the driving Brownian motion is exactly Gaussian. We harness this structure to absorb the stochastic approximation error inside the diffusion process, and obtain improved convergence guarantees for these algorithms. For SGLD, we prove the first stable convergence rate in KL divergence without requiring uniform warm start, assuming the target density satisfies a Log-Sobolev Inequality. Our result implies superior first-order oracle complexity compared to prior works, under significantly milder assumptions. We also prove the first guarantees for SGLD under even weaker conditions such as H\"{o}lder smoothness and Poincare Inequality, thus bridging the gap between the state-of-the-art guarantees for LMC and SGLD. Our analysis motivates a new algorithm called covariance correction, which corrects for the additional noise introduced by the stochastic approximation by rescaling the strength of the diffusion. Finally, we apply our techniques to analyze RBM, and significantly improve upon the guarantees in prior works (such as removing exponential dependence on horizon), under minimal assumptions.


翻译:我们考虑采样算法的随机近似,如基于随机梯度的 Langevin 动力学 (SGLD) 和相互作用粒子动力学 (IPD) 的随机批处理方法 (RBM)。我们观察到,由于中心极限定理 (CLT),随机近似引入的噪声几乎是高斯的,而驱动布朗运动则是完全高斯的。我们利用这个结构来吸收扩散过程中的随机近似误差,并为这些算法获得改进的收敛保证。对于 SGLD,我们在不需要统一的热启动的情况下证明了 KL 散度的第一个稳定收敛速率,假设目标密度满足对数伯努利不等式。我们的结果意味着,在明显更温和的假设下,与之前的工作相比,具有更优越的一阶预言机复杂度。我们还证明了 SGLD 的第一个保证,即在更弱的条件下(例如,H\"{o}lder 平滑和 Poincare 不等式),因此弥合了 LMC 和 SGLD 的最新保证之间的差距。我们的分析促使了一个新算法,称为协方差校正,该算法通过重新缩放扩散的强度来校正随机近似引入的额外噪声。最后,我们应用我们的技术来分析 RBM,并在最小的假设下极大地改进了之前的保证(例如消除了对时间跨度的指数依赖)。

0
下载
关闭预览

相关内容

【2023新书】随机模型基础,815页pdf
专知会员服务
100+阅读 · 2023年5月10日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
专知会员服务
61+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
RL解决'LunarLander-v2' (SOTA)
CreateAMind
62+阅读 · 2019年9月27日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月11日
VIP会员
相关VIP内容
【2023新书】随机模型基础,815页pdf
专知会员服务
100+阅读 · 2023年5月10日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
专知会员服务
61+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
RL解决'LunarLander-v2' (SOTA)
CreateAMind
62+阅读 · 2019年9月27日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
相关基金
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员