The estimation of the generalization error of classifiers often relies on a validation set. Such a set is hardly available in few-shot learning scenarios, a highly disregarded shortcoming in the field. In these scenarios, it is common to rely on features extracted from pre-trained neural networks combined with distance-based classifiers such as nearest class mean. In this work, we introduce a Gaussian model of the feature distribution. By estimating the parameters of this model, we are able to predict the generalization error on new classification tasks with few samples. We observe that accurate distance estimates between class-conditional densities are the key to accurate estimates of the generalization performance. Therefore, we propose an unbiased estimator for these distances and integrate it in our numerical analysis. We show that our approach outperforms alternatives such as the leave-one-out cross-validation strategy in few-shot settings.
翻译:分类器一般化错误的估算往往依赖于一个验证集。 这样的一组很难在几张短短的学习情景中找到, 在外地是一个被高度忽视的缺点。 在这些情景中, 通常依赖从受过训练的神经网络中提取的特征, 加上远程分类器, 如近级平均值。 在这项工作中, 我们引入了特征分布的高斯模型。 通过估算该模型的参数, 我们能够用少量样本预测新分类任务的一般化错误。 我们观察到, 类条件密度准确的估算是准确估计一般化性能的关键。 因此, 我们建议了这些距离的公正估计, 并将其纳入我们的数字分析中。 我们显示, 我们的方法超越了在几发环境中的放出一出交叉校准战略等替代方法。